python爬虫学习------scrapy第二部分(第三十天)

2024-04-26 22:52

本文主要是介绍python爬虫学习------scrapy第二部分(第三十天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎈🎈作者主页: 喔的嘛呀🎈🎈
🎈🎈所属专栏:python爬虫学习🎈🎈
✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天开心哦!✨✨ 

兄弟姐妹,大家好哇!我是喔的嘛呀。今天我们来学习 scrapy的第二部分。

一、Item Pipelines

在Scrapy框架中,Item Pipeline是一个用于处理爬虫抓取到的数据的关键组件。它负责接收由Spiders(爬虫)提取出的Item(实体),并对这些Item进行进一步的处理,如清洗、验证和持久化等。Item Pipeline提供了灵活的方式,以便将抓取的数据按照我们的需求进行存储或进一步处理。

以下是Item Pipeline的主要作用:

  1. 数据清洗:Pipeline可以对从网页中抓取的数据进行清洗,去除不需要的字符、空格、HTML标签等,确保数据的整洁和一致性。
  2. 数据验证:在将数据持久化之前,Pipeline可以执行验证操作,检查数据是否满足特定的格式或条件。这有助于确保数据的准确性和可靠性。
  3. 持久化存储:Pipeline可以将清洗和验证后的数据保存到数据库(如MySQL、MongoDB等)、文件(如CSV、JSON等)或其他存储系统中。这样,我们可以长期保存并随时访问这些抓取的数据。
  4. 发送数据到外部API:除了存储数据外,Pipeline还可以将数据发送到外部API进行进一步处理或分析。

要编写自定义的Pipeline,你需要遵循以下步骤:

  1. 创建Pipeline类:首先,你需要创建一个继承自scrapy.pipelines.Pipeline的Python类。在这个类中,你可以定义一些方法,如process_item,来处理传入的Item。
  2. 实现process_item方法process_item方法是Pipeline类中的核心方法,它接收一个Item和一个Spider作为参数。在这个方法中,你可以实现数据清洗、验证和持久化等逻辑。
  3. 配置Pipeline:在你的Scrapy项目的settings.py文件中,你需要添加你的Pipeline类的路径到ITEM_PIPELINES设置中,并为其分配一个优先级数字。这个数字决定了Pipeline的执行顺序,数字越小,优先级越高。

下面是一个简单的自定义Pipeline示例:

# myproject/pipelines.py  class MyCustomPipeline(object):  def __init__(self):  # 初始化方法,可以在这里建立数据库连接等  self.connection = ...  def open_spider(self, spider):  # 在Spider打开时调用,可以用于执行一些启动时的任务  pass  def close_spider(self, spider):  # 在Spider关闭时调用,可以用于执行一些清理任务,如关闭数据库连接等  self.connection.close()  def process_item(self, item, spider):  # 处理Item的方法,你可以在这里实现数据清洗、验证和持久化等操作  # 假设item['data']是需要存储的数据  cleaned_data = self.clean_data(item['data'])  if self.validate_data(cleaned_data):  self.store_data(cleaned_data)  return item  # 如果处理成功,返回Item以便进行后续的Pipeline处理  else:  raise DropItem("Invalid data: %s" % item)  # 如果验证失败,则丢弃该Item  def clean_data(self, data):  # 数据清洗逻辑  ...  def validate_data(self, data):  # 数据验证逻辑  ...  def store_data(self, data):  # 数据持久化逻辑,例如存储到数据库  ...

然后,在你的settings.py文件中配置Pipeline:

# myproject/settings.py  ITEM_PIPELINES = {  'myproject.pipelines.MyCustomPipeline': 300,  # 数字是优先级,可以根据需要调整  
}

通过编写自定义的Pipeline,你可以根据自己的需求灵活地处理爬虫抓取到的数据,实现数据清洗、验证和持久化等功能。

二、Middleware(中间件)

在Scrapy框架中,中间件(Middleware)是一个非常重要的组件,它允许开发者在Scrapy引擎处理请求和响应的过程中插入自定义的代码。中间件位于Scrapy引擎和下载器之间,用于拦截、修改、或添加额外的逻辑到请求和响应中。通过中间件,你可以轻松实现如设置代理、添加请求头、处理异常等功能。

中间件的概念

中间件是一种插件式的组件,用于在Scrapy处理请求和响应的过程中添加额外的功能。Scrapy提供了请求中间件(Request Middleware)和响应中间件(Response Middleware)两种类型。请求中间件在请求被下载器发送之前处理请求,而响应中间件在响应被引擎处理之前处理响应。

如何编写自定义的中间件

要编写自定义的中间件,你需要创建一个Python类,并实现特定的方法。这些方法会在请求或响应被处理时自动调用。

以下是一个简单的自定义请求中间件的示例:

class CustomRequestMiddleware:  def process_request(self, request, spider):  # 在请求被发送之前修改请求,比如添加请求头  request.headers['Custom-Header'] = 'Custom Value'  return None  # 返回None表示继续处理请求  def process_exception(self, request, exception, spider):  # 处理请求过程中发生的异常  # 可以选择记录日志、重试请求或返回None  return None  # 返回None表示继续抛出异常

同样地,你也可以创建自定义的响应中间件:

class CustomResponseMiddleware:  def process_response(self, request, response, spider):  # 在响应被处理之前修改响应,比如检查响应状态码  if response.status != 200:  return self._handle_error(request, response, spider)  # 处理或返回响应  return response  def _handle_error(self, request, response, spider):  # 处理响应错误的逻辑,比如记录日志或重试请求  pass  def process_exception(self, request, exception, spider):  # 处理在下载过程中发生的异常  # 可以选择记录日志、重试请求或返回None  return None  # 返回None表示继续抛出异常

中间件的应用场景

中间件在Scrapy爬虫中有许多应用场景,以下是一些常见的例子:

  1. 设置代理:通过中间件,你可以为所有请求设置代理,以隐藏你的爬虫的真实IP地址。
  2. 添加请求头:你可以使用中间件来添加自定义的请求头,比如User-Agent,以模拟不同的浏览器行为。
  3. 处理异常:中间件可以用来处理在请求或响应过程中发生的异常,比如网络错误、超时等。你可以定义重试逻辑、记录日志或采取其他适当的措施。
  4. 自定义请求或响应数据:在请求被发送或响应被处理之前,你可以通过中间件来修改请求或响应的数据,比如添加额外的参数、过滤不需要的数据等。
  5. 实现身份验证:对于需要身份验证的网站,你可以使用中间件来在请求中添加认证信息,如cookies或API令牌。
  6. 启用或禁用爬虫组件:通过中间件,你可以基于某些条件启用或禁用特定的爬虫组件,如某些特定的spider或downloader中间件。

要启用自定义的中间件,你需要在Scrapy项目的settings.py文件中配置它们。对于请求中间件,你需要将它们添加到DOWNLOADER_MIDDLEWARES设置中;对于响应中间件,你需要将它们添加到SPIDER_MIDDLEWARES设置中。每个中间件都需要一个唯一的键(通常是中间件类的路径)和一个整数值来表示它的优先级。数值越小,优先级越高。

# settings.py  DOWNLOADER_MIDDLEWARES = {  'myproject.middlewares.CustomRequestMiddleware': 543,  
}  SPIDER_MIDDLEWARES = {  'myproject.middlewares.CustomResponseMiddleware': 543,  
}

通过编写和使用中间件,你可以灵活地扩展Scrapy的功能,满足各种复杂的爬虫需求。

三、设置与配置(Settings & Configurations)

Scrapy 设置与配置是控制爬虫行为的重要方面,通过调整不同的设置,你可以定制爬虫的行为以满足特定的需求。以下是关于 Scrapy 设置和配置的基本介绍,以及如何调整并发和延迟来优化爬虫性能。

Scrapy 设置

Scrapy 框架提供了一套默认的设置,这些设置可以在 Scrapy 项目的 settings.py 文件中进行自定义。通过修改这些设置,你可以控制爬虫的行为、性能以及数据处理等方面。

一些常见的 Scrapy 设置包括:

  • ROBOTSTXT_OBEY: 控制爬虫是否遵守 robots.txt 文件中的规则。
  • CONCURRENT_REQUESTS: 并发请求的最大数量,用于控制爬虫同时发送的请求数。
  • DOWNLOAD_DELAY: 下载器在连续发送请求之间的延迟时间(秒),用于控制爬虫发送请求的速率。
  • RETRY_TIMES: 请求失败时的重试次数。
  • RETRY_HTTP_CODES: 需要重试的 HTTP 状态码列表。
  • DUPEFILTER_CLASS: 重复请求过滤器的类名,用于去除重复的请求。
  • ITEM_PIPELINES: Item Pipeline 的配置和顺序。
  • LOG_LEVEL: 控制日志输出的级别。

你可以在 settings.py 文件中添加或修改这些设置来定制你的爬虫。例如:

python复制代码
# settings.py# 并发请求数CONCURRENT_REQUESTS = 16# 请求之间的延迟时间(秒)DOWNLOAD_DELAY = 3# 重试次数RETRY_TIMES = 3# 其他自定义设置...

并发与延迟

调整并发请求数和请求超时时间等设置是优化爬虫性能的关键。以下是一些建议:

并发请求数 (CONCURRENT_REQUESTS):

  • 增加并发请求数可以加快爬取速度,但也可能导致目标网站过载或被封禁。
  • 根据目标网站的负载能力和爬虫所在服务器的性能,适当调整并发请求数。

请求之间的延迟 (DOWNLOAD_DELAY):

  • 设置适当的延迟可以模拟人类用户的浏览行为,降低被封禁的风险。
  • 如果目标网站对请求频率有严格的限制,需要增加延迟时间。

超时时间:

  • 你可以通过 DOWNLOAD_TIMEOUT 设置请求的超时时间。如果请求在这个时间内没有响应,Scrapy 会认为请求失败。
  • 根据网络条件和目标网站的响应速度,调整超时时间以避免不必要的等待或过多的失败请求。

自动调整设置:

  • Scrapy 还提供了 AUTOTHROTTLE_ENABLED 和相关设置,可以自动调整请求延迟,以根据网站的响应速度动态控制爬虫的速度。

调整这些设置时,建议逐步进行,并观察爬虫的性能和目标网站的响应。通过不断地尝试和调整,你可以找到最适合你爬虫的设置组合。

最后,记得在修改完设置后,重新启动你的 Scrapy 项目以使新的设置生效。

好了,今天的学习就到这里了,我们明天再见啦!拜拜!

这篇关于python爬虫学习------scrapy第二部分(第三十天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/938876

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss