【Linux系统化学习】死锁 | 线程同步

2024-04-26 09:52

本文主要是介绍【Linux系统化学习】死锁 | 线程同步,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

死锁

死锁的必要条件

避免死锁

线程同步

条件变量

同步概念和竞态条件

条件变量接口

创建和初始化条件变量

等待条件满足

唤醒等待

 毁条件变量

为什么 pthread_cond_wait 需要互斥量?

条件变量使用规范

等待条件代码

给条件发送信号代码


死锁

死锁是指在一组线程中的各个线程均占有不会释放的资源,但因互相申请被其他线程所站用不会释放的资源而处于的一种永久等待状态。(编码疏忽造成的问题)

简单的例子

void *route(void *arg)
{char *id = (char *)arg;while (1){pthread_mutex_lock(&mutex);if (ticket > 0){usleep(1000);printf("%s sells ticket:%d\n", id, ticket);ticket--;//再次申请锁pthread_mutex_lock(&mutex);}else{//再次申请锁pthread_mutex_lock(&mutex);break;}}
}

以上篇文章的抢票代码为例:进程中只含有一个锁,当一个执行流进入临界区时申请加锁,因为只有一个锁且没有被使用所以会加锁成功,在出临界区的时候,又申请加锁,此时唯一的锁已经被申请了,会申请加锁失败,就会被挂起,造成永久等待即死锁。

死锁的必要条件

互斥条件:一个资源每次只能被一个执行流使用(使用锁)
请求与保持条件:一个执行流因请求资源而阻塞时,对已获得的资源保持不放(加锁后不解锁)
不剥夺条件:一个执行流已获得的资源,在末使用完之前,不能强行剥夺(加锁后不可以被强制解锁)
循环等待条件:若干执行流之间形成一种头尾相接的循环等待资源的关系(多执行流多把锁相互申请)

避免死锁

  • 破坏死锁的四个必要条件
  • 加锁顺序一致
  • 避免锁未释放的场景
  • 资源一次性分配

第一个条件就是对上面四个条件中的一个或多个条件破坏掉即可。 死锁的产生是因为在代码过程中使用了锁,那我们在编写程序的时非必要条件下可以不使用锁。


线程同步

在上篇文章线程互斥中的我们提到了一个问题:如果一个线程对锁的竞争能力比较强的话,会一直抢夺公共资源;导致其他线程拿不到这个资源也就是线程饥饿。我们可以在一个线程申请加锁获取到公共资源后解锁,再将其纳入到一个类似队列结构的队尾即可解决这个问题也就是线程同步。

条件变量

当一个线程互斥地访问某个变量时,它可能发现在其它线程改变状态之前,它什么也做不了。
例如:一个线程访问队列时,发现队列为空,它只能等待,只到其它线程将一个节点添加到队列中。这种情况就需要用到条件变量。(一个线程向另一个线程通知消息的方式)

例子:张三在一张桌子上放苹果,李四蒙着眼睛拿桌子上的苹果,桌子含有一个只能服务一个人管理员;当桌子没有苹果的时候,李四会轮询访问管理员有没有苹果,这样即成管理员的资源浪费有没办法让张三放苹果;于是管理员想到一个办法,在桌子上安装一个铃铛;当没有苹果且李四过来拿苹果的时候,管理员会让李四在一旁阻塞等待;当张三放在桌子上的苹果到达一定数量时,管理员会按一下这个铃铛,李四才会拿苹果。这个例子中的铃铛就是一个条件变量

同步概念和竞态条件

  • 同步:在保证数据安全的前提下,让线程能够按照某种特定的顺序访问临界资源,从而有效避免饥饿问题,叫做同步
  • 竞态条件:因为时序问题,而导致程序异常,我们称之为竞态条件。在线程场景下,这种问题也不难理解

条件变量接口

创建和初始化条件变量

pthread_cond_t cond;//定义变量后再初始化
int pthread_cond_init(pthread_cond_t *restrict cond,const pthread_condattr_t *restrict attr);

参数

cond:要初始化的条件变量
attr:NULL

等待条件满足

int pthread_cond_wait(pthread_cond_t *restrict cond,pthread_mutex_t *restrict mutex);

参数

cond:要在这个条件变量上等待
mutex:互斥量

唤醒等待

//唤醒所有线程
int pthread_cond_broadcast(pthread_cond_t *cond);
//唤醒单个线程
int pthread_cond_signal(pthread_cond_t *cond);

 毁条件变量

int pthread_cond_destroy(pthread_cond_t *cond)

简单样例

#include<iostream>
#include<string>
#include<pthread.h>
#include<unistd.h>
using namespace std;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
void* threadRoutine(void* args)
{string name = static_cast<const char*> (args);while(true){pthread_mutex_lock(&mutex);pthread_cond_wait(&cond,&mutex);cout<<"I am a new thread : "<<name<<endl;pthread_mutex_unlock(&mutex);}   
}
int main()
{pthread_t t1,t2,t3;pthread_create(&t1,nullptr,threadRoutine,(void * )"thread_1");pthread_create(&t2,nullptr,threadRoutine,(void * )"thread_2");pthread_create(&t3,nullptr,threadRoutine,(void * )"thread_3");sleep(3);while(true){pthread_cond_signal(&cond);sleep(1);}pthread_join(t1,nullptr);pthread_join(t2,nullptr);pthread_join(t3,nullptr);return 0;
}

 注:

  • 线程在进行等待的时候,会自动释放锁
  • 线程被唤醒的时候,实在临界区内,当线程被唤醒时在pthread_cond_wait返回的时候,要重新申请并持有锁
  • 当线程被唤醒的时候,会重新申请并持有锁本质也是要参与锁的竞争的

为什么 pthread_cond_wait 需要互斥量?

  • 条件等待是线程间同步的一种手段,如果只有一个线程,条件不满足,一直等下去都不会满足,所以必须要有一个线程通过某些操作,改变共享变量,使原先不满足的条件变得满足,并且友好的通知等待在条件变量上的线程。
  • 条件不会无缘无故的突然变得满足了,必然会牵扯到共享数据的变化。所以一定要用互斥锁来保护。没有互斥锁就无法安全的获取和修改共享数据。
  • 按照上面的说法,我们设计出如下的代码:先上锁,发现条件不满足,解锁,然后等待在条件变量上不就行了,如下代码:

// 错误的设计
pthread_mutex_lock(&mutex);
while (condition_is_false) {
pthread_mutex_unlock(&mutex);
//解锁之后,等待之前,条件可能已经满足,信号已经发出,但是该信号可能被错过
pthread_cond_wait(&cond);
pthread_mutex_lock(&mutex);
}
pthread_mutex_unlock(&mutex);
  • 由于解锁和等待不是原子操作。调用解锁之后, pthread_cond_wait 之前,如果已经有其他线程获取到互斥量,摒弃条件满足,发送了信号,那么 pthread_cond_wait 将错过这个信号,可能会导致线程永远阻塞在这个 pthread_cond_wait 。所以解锁和等待必须是一个原子操作。
  • int pthread_cond_wait(pthread_cond_ t *cond,pthread_mutex_ t * mutex); 进入该函数后,会去看条件量等于0不?等于,就把互斥量变成1,直到cond_ wait返回,把条件量改成1,把互斥量恢复成原样

条件变量使用规范

等待条件代码

pthread_mutex_lock(&mutex);
while (条件为假)
pthread_cond_wait(cond, mutex);
修改条件
pthread_mutex_unlock(&mutex);

给条件发送信号代码

pthread_mutex_lock(&mutex);
设置条件为真
pthread_cond_signal(cond);
pthread_mutex_unlock(&mutex);

今天对Linux下线程同步和死锁锁的分享到这就结束了,希望大家读完后有很大的收获,也可以在评论区点评文章中的内容和分享自己的看法;个人主页还有很多精彩的内容。您三连的支持就是我前进的动力,感谢大家的支持!!! 

这篇关于【Linux系统化学习】死锁 | 线程同步的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937267

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

什么是 Linux Mint? 适合初学者体验的桌面操作系统

《什么是LinuxMint?适合初学者体验的桌面操作系统》今天带你全面了解LinuxMint,包括它的历史、功能、版本以及独特亮点,话不多说,马上开始吧... linux Mint 是一款基于 Ubuntu 和 Debian 的知名发行版,它的用户体验非常友好,深受广大 Linux 爱好者和日常用户的青睐,

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二