leetcode题目69:x的平方根【python】

2024-04-26 08:28

本文主要是介绍leetcode题目69:x的平方根【python】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

计算并返回 x 的平方根,其中 x 是非负整数。

由于返回类型是整数,结果只保留整数部分,小数部分将被舍去。

输入格式
  • x:一个非负整数。
输出格式
  • 返回整数部分的平方根。

示例

示例 1
输入: x = 4
输出: 2
示例 2
输入: x = 8
输出: 2
解释: 8 的平方根是 2.82842..., 因为返回类型是整数,小数部分将被舍去。

方法一:二分查找

解题步骤
  1. 设置边界:设置 left 为 0,rightx
  2. 迭代查找:在 leftright 之间使用二分查找来确定平方根。
  3. 检查中点平方:计算中点的平方,与 x 比较来调整 leftright
完整的规范代码
def mySqrt(x):"""使用二分查找计算平方根:param x: int, 输入的非负整数:return: int, 平方根的整数部分"""left, right = 0, xwhile left <= right:mid = (left + right) // 2if mid * mid <= x < (mid + 1) * (mid + 1):return midelif mid * mid < x:left = mid + 1else:right = mid - 1# 示例调用
print(mySqrt(4))  # 输出: 2
print(mySqrt(8))  # 输出: 2
算法分析
  • 时间复杂度:(O(\log n)),其中 n 是输入大小 x,二分查找的时间复杂度。
  • 空间复杂度:(O(1)),只使用了固定的几个变量。

方法二:牛顿迭代法

解题步骤

在这里插入图片描述

完整的规范代码
def mySqrt(x):"""使用牛顿迭代法计算平方根:param x: int, 输入的非负整数:return: int, 平方根的整数部分"""if x < 2:return xx0 = xx1 = (x0 + x // x0) // 2while x1 < x0:x0 = x1x1 = (x0 + x // x0) // 2return x0# 示例调用
print(mySqrt(4))  # 输出: 2
print(mySqrt(8))  # 输出: 2
算法分析
  • 时间复杂度:(O(log n)),牛顿迭代法通常具有很快的收敛速度。
  • 空间复杂度:(O(1)),使用了常数个额外空间。

方法三:内置函数法

解题步骤
  1. 直接计算:使用 Python 的内置函数 math.sqrt() 计算平方根。
  2. 结果转换:将得到的浮点数结果转换为整数。
完整的规范代码
import mathdef mySqrt(x):"""使用内置函数计算平方根:param x: int, 输入的非负整数:return: int, 平方根的整数部分"""return int(math.sqrt(x))# 示例调用
print(mySqrt(4))  # 输出: 2
print(mySqrt(8))  # 输出: 2
算法分析
  • 时间复杂度:(O(1)),内置函数通常优化良好,执行速度快。
  • 空间复杂度:(O(1)),不需要额外空间。

方法四:暴力法

解题步骤
  1. 线性搜索:从 0 开始逐一计算平方,直到平方大于 x
  2. 返回结果:返回最后一个平方不超过 x 的数。
完整的规范代码
def mySqrt(x):"""使用暴力法计算平方根:param x: int, 输入的非负整数:return: int, 平方根的整数部分"""ans = 0while (ans + 1) * (ans + 1) <= x:ans += 1return ans# 示例调用
print(mySqrt(4))  # 输出: 2
print(mySqrt(8))  # 输出: 2
算法分析
  • 时间复杂度:(O(sqrt{n})),需要计算直到 x 的平方根。
  • 空间复杂度:(O(1)),使用固定空间。

方法五:位运算法

解题步骤
  1. 位移操作:通过位操作逐步构建结果的每一位,检查平方后是否小于等于 x
  2. 迭代构建结果:从最高位开始尝试,逐步向下调整。
完整的规范代码
def mySqrt(x):"""使用位运算法计算平方根:param x: int, 输入的非负整数:return: int, 平方根的整数部分"""ans = 0bit = 1 << 15  # 从高位开始尝试while bit > 0:ans |= bitif ans * ans > x:ans ^= bit  # 如果尝试结果过大,撤销这一位bit >>= 1return ans# 示例调用
print(mySqrt(4))  # 输出: 2
print(mySqrt(8))  # 输出: 2
算法分析
  • 时间复杂度:(O(log n)),位运算的复杂度为常数次迭代。
  • 空间复杂度:(O(1)),不需要额外空间。

不同算法的优劣势对比

特征方法一:二分查找方法二:牛顿迭代法方法三:内置函数法方法四:暴力法方法五:位运算法
时间复杂度(O(log n))(O(log n))(O(1))(O(sqrt{n}))(O(log n))
空间复杂度(O(1))(O(1))(O(1))(O(1))(O(1))
优势稳定且高效收敛速度快,适用于大数实现简单,运行快速直观易懂不使用乘法和除法,节省资源
劣势需要处理边界条件初始值依赖较大受内置函数性能限制时间成本较高代码相对复杂,需要位操作知识

应用示例

图形处理软件:在处理图形和游戏开发中,经常需要计算对象的大小或者距离,这时候求平方根是常见的需求。例如,计算点到原点的距离,确定对象是否在视野内等。不同的平方根计算方法可以根据性能需求和精确度要求选择。例如,位运算法因为其高效性,非常适合嵌入式系统或游戏开发中,牛顿迭代法则适用于需要高精度计算的科学计算软件。

这篇关于leetcode题目69:x的平方根【python】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937076

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(