leetcode题目69:x的平方根【python】

2024-04-26 08:28

本文主要是介绍leetcode题目69:x的平方根【python】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

计算并返回 x 的平方根,其中 x 是非负整数。

由于返回类型是整数,结果只保留整数部分,小数部分将被舍去。

输入格式
  • x:一个非负整数。
输出格式
  • 返回整数部分的平方根。

示例

示例 1
输入: x = 4
输出: 2
示例 2
输入: x = 8
输出: 2
解释: 8 的平方根是 2.82842..., 因为返回类型是整数,小数部分将被舍去。

方法一:二分查找

解题步骤
  1. 设置边界:设置 left 为 0,rightx
  2. 迭代查找:在 leftright 之间使用二分查找来确定平方根。
  3. 检查中点平方:计算中点的平方,与 x 比较来调整 leftright
完整的规范代码
def mySqrt(x):"""使用二分查找计算平方根:param x: int, 输入的非负整数:return: int, 平方根的整数部分"""left, right = 0, xwhile left <= right:mid = (left + right) // 2if mid * mid <= x < (mid + 1) * (mid + 1):return midelif mid * mid < x:left = mid + 1else:right = mid - 1# 示例调用
print(mySqrt(4))  # 输出: 2
print(mySqrt(8))  # 输出: 2
算法分析
  • 时间复杂度:(O(\log n)),其中 n 是输入大小 x,二分查找的时间复杂度。
  • 空间复杂度:(O(1)),只使用了固定的几个变量。

方法二:牛顿迭代法

解题步骤

在这里插入图片描述

完整的规范代码
def mySqrt(x):"""使用牛顿迭代法计算平方根:param x: int, 输入的非负整数:return: int, 平方根的整数部分"""if x < 2:return xx0 = xx1 = (x0 + x // x0) // 2while x1 < x0:x0 = x1x1 = (x0 + x // x0) // 2return x0# 示例调用
print(mySqrt(4))  # 输出: 2
print(mySqrt(8))  # 输出: 2
算法分析
  • 时间复杂度:(O(log n)),牛顿迭代法通常具有很快的收敛速度。
  • 空间复杂度:(O(1)),使用了常数个额外空间。

方法三:内置函数法

解题步骤
  1. 直接计算:使用 Python 的内置函数 math.sqrt() 计算平方根。
  2. 结果转换:将得到的浮点数结果转换为整数。
完整的规范代码
import mathdef mySqrt(x):"""使用内置函数计算平方根:param x: int, 输入的非负整数:return: int, 平方根的整数部分"""return int(math.sqrt(x))# 示例调用
print(mySqrt(4))  # 输出: 2
print(mySqrt(8))  # 输出: 2
算法分析
  • 时间复杂度:(O(1)),内置函数通常优化良好,执行速度快。
  • 空间复杂度:(O(1)),不需要额外空间。

方法四:暴力法

解题步骤
  1. 线性搜索:从 0 开始逐一计算平方,直到平方大于 x
  2. 返回结果:返回最后一个平方不超过 x 的数。
完整的规范代码
def mySqrt(x):"""使用暴力法计算平方根:param x: int, 输入的非负整数:return: int, 平方根的整数部分"""ans = 0while (ans + 1) * (ans + 1) <= x:ans += 1return ans# 示例调用
print(mySqrt(4))  # 输出: 2
print(mySqrt(8))  # 输出: 2
算法分析
  • 时间复杂度:(O(sqrt{n})),需要计算直到 x 的平方根。
  • 空间复杂度:(O(1)),使用固定空间。

方法五:位运算法

解题步骤
  1. 位移操作:通过位操作逐步构建结果的每一位,检查平方后是否小于等于 x
  2. 迭代构建结果:从最高位开始尝试,逐步向下调整。
完整的规范代码
def mySqrt(x):"""使用位运算法计算平方根:param x: int, 输入的非负整数:return: int, 平方根的整数部分"""ans = 0bit = 1 << 15  # 从高位开始尝试while bit > 0:ans |= bitif ans * ans > x:ans ^= bit  # 如果尝试结果过大,撤销这一位bit >>= 1return ans# 示例调用
print(mySqrt(4))  # 输出: 2
print(mySqrt(8))  # 输出: 2
算法分析
  • 时间复杂度:(O(log n)),位运算的复杂度为常数次迭代。
  • 空间复杂度:(O(1)),不需要额外空间。

不同算法的优劣势对比

特征方法一:二分查找方法二:牛顿迭代法方法三:内置函数法方法四:暴力法方法五:位运算法
时间复杂度(O(log n))(O(log n))(O(1))(O(sqrt{n}))(O(log n))
空间复杂度(O(1))(O(1))(O(1))(O(1))(O(1))
优势稳定且高效收敛速度快,适用于大数实现简单,运行快速直观易懂不使用乘法和除法,节省资源
劣势需要处理边界条件初始值依赖较大受内置函数性能限制时间成本较高代码相对复杂,需要位操作知识

应用示例

图形处理软件:在处理图形和游戏开发中,经常需要计算对象的大小或者距离,这时候求平方根是常见的需求。例如,计算点到原点的距离,确定对象是否在视野内等。不同的平方根计算方法可以根据性能需求和精确度要求选择。例如,位运算法因为其高效性,非常适合嵌入式系统或游戏开发中,牛顿迭代法则适用于需要高精度计算的科学计算软件。

这篇关于leetcode题目69:x的平方根【python】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937076

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

leetcode-24Swap Nodes in Pairs

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode swapPairs(L

leetcode-23Merge k Sorted Lists

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode mergeKLists

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入