加权图的单源最短路径问题——解法:DijKstra算法

2024-04-25 19:38

本文主要是介绍加权图的单源最短路径问题——解法:DijKstra算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题都是老生常谈,不再介绍,此处给出算法思想(自己总结的,别人写好的)、以及代码实现。

1、自己总结算法思想

记新加入顶点的集合为S,余下顶点的集合为V-S.

         i、取一个起始顶点,加入S中。

         ii、从V-S集合中,寻找出最短路径距离信息的结点,加入S集合中

         iii、对新加入S中的顶点,更新新加入顶点到V-S中邻接顶点的路径距离信息,若无相应路径则转步骤3(只有当路径信息变小时才更新哈,并记录此时已更新路径信息结点的前驱结点(方便输出呢),与prim算法区别的是,此处是对新加入的结点,更新的是路径距离信息(即所谓从源点到新加入结点的邻接结点的路径权值之和))。

         iv、重复2、3步骤,直至S集合中顶点个数为图中所有顶点个数。

2、借鉴他人总结的算法思想

090644t797fce7n20of7j9.png

 

       与Floyd-Warshall算法一样这里仍然使用二维数组e来存储顶点之间边的关系,初始值如下。

090651l6pt4666tptut66u.png

 

       我们还需要用一个一维数组dis来存储1号顶点到其余各个顶点的初始路程,如下。

090657ofidcactthcig33i.png

 

       我们将此时dis数组中的值称为最短路的“估计值”。

       既然是求1号顶点到其余各个顶点的最短路程,那就先找一个离1号顶点最近的顶点。通过数组dis可知当前离1号顶点最近是2号顶点。当选择了2号顶点后,dis[2]的值就已经从“估计值”变为了“确定值”,即1号顶点到2号顶点的最短路程就是当前dis[2]值。为什么呢?你想啊,目前离1号顶点最近的是2号顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得1号顶点到2号顶点的路程进一步缩短了。因为1号顶点到其它顶点的路程肯定没有1号到2号顶点短,对吧O(∩_∩)O~

       既然选了2号顶点,接下来再来看2号顶点有哪些出边呢。有2->3和2->4这两条边。先讨论通过2->3这条边能否让1号顶点到3号顶点的路程变短。也就是说现在来比较dis[3]和dis[2]+e[2][3]的大小。其中dis[3]表示1号顶点到3号顶点的路程。dis[2]+e[2][3]中dis[2]表示1号顶点到2号顶点的路程,e[2][3]表示2->3这条边。所以dis[2]+e[2][3]就表示从1号顶点先到2号顶点,再通过2->3这条边,到达3号顶点的路程。

       我们发现dis[3]=12,dis[2]+e[2][3]=1+9=10,dis[3]>dis[2]+e[2][3],因此dis[3]要更新为10。这个过程有个专业术语叫做“松弛”。即1号顶点到3号顶点的路程即dis[3],通过2->3这条边松弛成功。这便是Dijkstra算法的主要思想:通过“边”来松弛1号顶点到其余各个顶点的路程。

 

       同理通过2->4(e[2][4]),可以将dis[4]的值从∞松弛为4(dis[4]初始为∞,dis[2]+e[2][4]=1+3=4,dis[4]>dis[2]+e[2][4],因此dis[4]要更新为4)。

       刚才我们对2号顶点所有的出边进行了松弛。松弛完毕之后dis数组为:

090706vmjy7l2ee2lyalia.png

 

       接下来,继续在剩下的3、4、5和6号顶点中,选出离1号顶点最近的顶点。通过上面更新过dis数组,当前离1号顶点最近是4号顶点。此时,dis[4]的值已经从“估计值”变为了“确定值”。下面继续对4号顶点的所有出边(4->3,4->5和4->6)用刚才的方法进行松弛。松弛完毕之后dis数组为:

090714f2p1wppynngj2pep.png

 

       继续在剩下的3、5和6号顶点中,选出离1号顶点最近的顶点,这次选择3号顶点。此时,dis[3]的值已经从“估计值”变为了“确定值”。对3号顶点的所有出边(3->5)进行松弛。松弛完毕之后dis数组为:

090722ywunackk35i8cni5.png

 

       继续在剩下的5和6号顶点中,选出离1号顶点最近的顶点,这次选择5号顶点。此时,dis[5]的值已经从“估计值”变为了“确定值”。对5号顶点的所有出边(5->4)进行松弛。松弛完毕之后dis数组为:

090730eq6oqzyq7laqha9y.png

 

       最后对6号顶点所有点出边进行松弛。因为这个例子中6号顶点没有出边,因此不用处理。到此,dis数组中所有的值都已经从“估计值”变为了“确定值”。

       最终dis数组如下,这便是1号顶点到其余各个顶点的最短路径。

090738azt5clcozl899ekt.png

 

       OK,现在来总结一下刚才的算法。算法的基本思想是:每次找到离源点(上面例子的源点就是1号顶点)最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。基本步骤如下:

  • 将所有的顶点分为两部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点一个顶点。我们这里用一个book[ i ]数组来记录哪些点在集合P中。例如对于某个顶点i,如果book[ i ]为1则表示这个顶点在集合P中,如果book[ i ]为0则表示这个顶点在集合Q中。

  • 设置源点s到自己的最短路径为0即dis=0。若存在源点有能直接到达的顶点i,则把dis[ i ]设为e[s][ i ]。同时把所有其它(源点不能直接到达的)顶点的最短路径为设为∞。

  • 在集合Q的所有顶点中选择一个离源点s最近的顶点u(即dis[u]最小)加入到集合P。并考察所有以点u为起点的边,对每一条边进行松弛操作。例如存在一条从u到v的边,那么可以通过将边u->v添加到尾部来拓展一条从s到v的路径,这条路径的长度是dis[u]+e[u][v]。如果这个值比目前已知的dis[v]的值要小,我们可以用新值来替代当前dis[v]中的值。

  • 重复第3步,如果集合Q为空,算法结束。最终dis数组中的值就是源点到所有顶点的最短路径。

3、代码实现(此处运用邻接矩阵存储图的信息)

#include<iostream>
#include<string.h>using namespace std;#define MAX 6      // point数量
#define INF_distance 0xFFFFFFFF/*
* Dijkstra最短路径。
* 即,统计图中"顶点"到其它各个顶点的最短路径。
*
* 参数说明:
*     adjMatrix      -- 邻接矩阵
*     startPoint     -- 起始顶点(start vertex)。即计算"顶点startPoint"到其它顶点的最短路径。
*     prePoint       -- 前驱顶点数组。prePoint[i]的值是"顶点startPoint"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
*     dist           -- 长度数组。dist[i]是"顶点startPoint"到"顶点i"的最短路径的长度。
*/void dijkstra(unsigned int adjMatrix[][MAX], int startPoint, unsigned int prePoint[], unsigned int dist[]) {int i, k;unsigned int temp, min;bool flag[MAX]; flag[i]=1表示"顶点startPoint"到"顶点i"的最短路径已成功获取。for (i = 0; i < MAX; ++i) {flag[i] = false;prePoint[i] = 0;dist[i] = adjMatrix[startPoint][i];}//对超始点自身进行初始化flag[startPoint] = true;prePoint[startPoint] = 0;k = startPoint;//遍历,每次找出到一个顶点的最短距离for (i = 0; i < MAX; ++i) {min = INF_distance;for (int j = 0; j < MAX; ++j) {//寻找具有最短距离的结点if (!flag[j]&&dist[j] < min) { //不在S中,从startPoint到V-S结点集中距离最短的min = dist[j];k = j;}}flag[k] = true;//表明此结点已遍历,放入S集中for (int j = 0; j < MAX;++j) {//更新k的邻接点距离temp = adjMatrix[k][j] == INF_distance ? INF_distance : (adjMatrix[k][j] + min);//主要是为了计算出startPoint到k结点相邻结点的距离if (!flag[j] && temp < dist[j]) {dist[j] = temp;prePoint[j] = k;//记录前驱结点是为了方便输出信息}}}}void print(unsigned int prePoint[], unsigned int dist[], int startPoint, int endPoint) {if (endPoint == startPoint) {cout << startPoint << "," << dist[endPoint] << endl;return;}if (endPoint != startPoint) {print(prePoint, dist, startPoint, prePoint[endPoint]);cout << endPoint << "," << dist[endPoint] << endl;}
}int main() {unsigned int prePoint[MAX];unsigned int dest[MAX];unsigned int adjMatrix[MAX][MAX] = { { 0, 1, 12, INF_distance, INF_distance, INF_distance },{ INF_distance, 0, 9, 3, INF_distance, INF_distance },{ INF_distance, INF_distance, 0, INF_distance, 5, INF_distance },{ INF_distance, INF_distance, 4, 0, 13, 15 },{ INF_distance, INF_distance, INF_distance, INF_distance, 0, 4 },{ INF_distance, INF_distance, INF_distance, INF_distance, INF_distance, 0 } };memset(prePoint, 0, sizeof(prePoint));memset(dest, 0, sizeof(dest));dijkstra(adjMatrix, 0, prePoint, dest);print(prePoint, dest, 0, 5);cout << MAX - 1 << "," << dest[MAX - 1] << endl;return 0;
}

参考链接:

https://blog.csdn.net/heroacool/article/details/51014824

https://www.cnblogs.com/GnibChen/p/8875247.html

这篇关于加权图的单源最短路径问题——解法:DijKstra算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/935608

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO