探究C++20协程(6)——实现协程之间消息传递

2024-04-25 18:44

本文主要是介绍探究C++20协程(6)——实现协程之间消息传递,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前主要关注的是协程与外部调用者的交互,这次也关注一下对等的协程之间的通信。

实现目标

在C++中实现协程的Channel相对复杂,因为C++标准库中并没有内置的协程间通信机制。C++20引入了协程支持,但主要提供了底层的协程操作,如协程的启动和暂停(通过co_await, co_return, 和 co_yield),并未直接提供Channel或其他高级并发原语。因此,实现一个C++的协程Channel需要依赖C++20的协程功能,结合额外的同步机制,如条件变量、互斥锁和原子操作等。

最终的 Channel 的用例如下:

Task<void, LooperExecutor> Producer(Channel<int> &channel) {int i = 0;while (i < 10) {// 写入时调用 write 函数co_await channel.write(i++);// 或者使用 << 运算符co_await (channel << i++);}// 支持关闭channel.close();
}Task<void, LooperExecutor> Consumer(Channel<int> &channel) {while (channel.is_active()) {try {// 读取时使用 read 函数,表达式的值就是读取的值auto received = co_await channel.read();int received;// 或者使用 >> 运算符将读取的值写入变量当中co_await (channel >> received);} catch (std::exception &e) {// 捕获 Channel 关闭时抛出的异常}}
}

co_await 表达式的支持

想要支持 co_await 表达式,只需要为 Channel 读写函数返回的 Awaiter 类型添加相应的 await_transform 函数。假定Channel的read 和 write 两个函数的返回值类型 ReaderAwaiter 和 WriterAwaiter,接下来就添加一个非常简单的 await_transform 的支持:

template<typename ResultType, typename Executor>
struct TaskPromise {template<typename _ValueType>auto await_transform(ReaderAwaiter<_ValueType> reader_awaiter) {reader_awaiter.executor = &executor;return reader_awaiter;}template<typename _ValueType>auto await_transform(WriterAwaiter<_ValueType> writer_awaiter) {writer_awaiter.executor = &executor;return writer_awaiter;}
}

由于 Channel 的 buffer 和对 Channel 的读写本身会决定协程是否挂起或恢复,因此这些逻辑都将在 Channel 当中给出,TaskPromise 能做的就是把调度器传过去,当协程恢复时使用。

Awaiter 的实现

Awaiter 负责在挂起时将自己存入 Channel,并且在需要时恢复协程。因此除了前面看到需要在恢复执行协程时的调度器之外,Awaiter 还需要持有 Channel、需要读写的值。

WriterAwaiter

template<typename ValueType>
struct WriterAwaiter {Channel<ValueType> *channel;// 调度器不是必须的,如果没有,则直接在当前线程执行(等价于 NoopExecutor)AbstractExecutor *executor = nullptr;// 写入 Channel 的值ValueType _value;std::coroutine_handle<> handle;WriterAwaiter(Channel<ValueType> *channel, ValueType value): channel(channel), _value(value) {}bool await_ready() {return false;}auto await_suspend(std::coroutine_handle<> coroutine_handle) {// 记录协程 handle,恢复时用this->handle = coroutine_handle;// 将自身传给 Channel,Channel 内部会根据自身状态处理是否立即恢复或者挂起channel->try_push_writer(this);}void await_resume() {// Channel 关闭时也会将挂起的读写协程恢复// 要检查是否是关闭引起的恢复,如果是,check_closed 会抛出 Channel 关闭异常channel->check_closed();}// Channel 当中恢复该协程时调用 resume 函数void resume() {// 我们将调度器调度的逻辑封装在这里if (executor) {executor->execute([this]() { handle.resume(); });} else {handle.resume();}}
};

ReaderAwaiter

template<typename ValueType>
struct ReaderAwaiter {Channel<ValueType> *channel;AbstractExecutor *executor = nullptr;ValueType _value;// 用于 channel >> received; 这种情况// 需要将变量的地址传入,协程恢复时写入变量内存ValueType* p_value = nullptr;std::coroutine_handle<> handle;explicit ReaderAwaiter(Channel<ValueType> *channel) : channel(channel) {}bool await_ready() { return false; }auto await_suspend(std::coroutine_handle<> coroutine_handle) {this->handle = coroutine_handle;// 将自身传给 Channel,Channel 内部会根据自身状态处理是否立即恢复或者挂起channel->try_push_reader(this);}int await_resume() {// Channel 关闭时也会将挂起的读写协程恢复// 要检查是否是关闭引起的恢复,如果是,check_closed 会抛出 Channel 关闭异常channel->check_closed();return _value;}// Channel 当中正常恢复读协程时调用 resume 函数void resume(ValueType value) {this->_value = value;if (p_value) {*p_value = value;}resume();}// Channel 关闭时调用 resume() 函数来恢复该协程// 在 await_resume 当中,如果 Channel 关闭,会抛出 Channel 关闭异常void resume() {if (executor) {executor->execute([this]() { handle.resume(); });} else {handle.resume();}}
};

Awaiter 的功能就是:负责用协程的调度器在需要时恢复协程,处理读写的值的传递(通过Channel)。

Channel 的实现

接下来给出 Channel 当中根据 buffer 的情况来处理读写两端的挂起和恢复的逻辑。

基本结构

template<typename ValueType>
struct Channel {... struct ChannelClosedException : std::exception {const char *what() const noexcept override {return "Channel is closed.";}};void check_closed() {// 如果已经关闭,则抛出异常if (!_is_active.load(std::memory_order_relaxed)) {throw ChannelClosedException();}}explicit Channel(int capacity = 0) : buffer_capacity(capacity) {_is_active.store(true, std::memory_order_relaxed);}// true 表示 Channel 尚未关闭bool is_active() {return _is_active.load(std::memory_order_relaxed);}// 关闭 Channelvoid close() {bool expect = true;// 判断如果已经关闭,则不再重复操作// 比较 _is_active 为 true 时才会完成设置操作,并且返回 trueif(_is_active.compare_exchange_strong(expect, false, std::memory_order_relaxed)) {// 清理资源clean_up();}}// 不希望 Channel 被移动或者复制Channel(Channel &&channel) = delete;Channel(Channel &) = delete;Channel &operator=(Channel &) = delete;// 销毁时关闭~Channel() {close();}private:// buffer 的容量int buffer_capacity;std::queue<ValueType> buffer;// buffer 已满时,新来的写入者需要挂起保存在这里等待恢复std::list<WriterAwaiter<ValueType> *> writer_list;// buffer 为空时,新来的读取者需要挂起保存在这里等待恢复std::list<ReaderAwaiter<ValueType> *> reader_list;// Channel 的状态标识std::atomic<bool> _is_active;std::mutex channel_lock;std::condition_variable channel_condition;void clean_up() {std::lock_guard lock(channel_lock);// 需要对已经挂起等待的协程予以恢复执行for (auto writer : writer_list) {writer->resume();}writer_list.clear();for (auto reader : reader_list) {reader->resume();}reader_list.clear();// 清空 bufferdecltype(buffer) empty_buffer;std::swap(buffer, empty_buffer);}
};

初始化和运行时:

  • 通道在创建时是开放的,可以进行数据的读写操作。
  • 当数据写入满足或读取可进行时,可能有等待的读写者被恢复执行。

关闭和清理:通道的关闭操作会触发资源的清理,包括清空缓冲区和恢复所有挂起的操作,确保没有线程或协程因通道关闭而无限期等待。

read 和 write

template<typename ValueType>
struct Channel {auto write(ValueType value) {check_closed();return WriterAwaiter<ValueType>(this, value);}auto operator<<(ValueType value) {return write(value);}auto read() {check_closed();return ReaderAwaiter<ValueType>(this);}auto operator>>(ValueType &value_ref) {auto awaiter =  read();// 保存待赋值的变量的地址,方便后续写入awaiter.p_value = &value_ref;return awaiter;}
}

write 方法:

  • 这个方法首先调用 check_closed() 检查通道是否已关闭。如果通道关闭,则会抛出 ChannelClosedException。
  • 若通道未关闭,方法将创建一个 WriterAwaiter 对象,这个对象负责管理写操作的挂起和恢复。WriterAwaiter 构造时接收通道自身的指针和要写入的值。

read 方法:

  • 类似于 write,read 方法首先检查通道是否已关闭,如果关闭,则抛出异常。
  • 如果通道开启,则创建并返回一个 ReaderAwaiter 对象,这个对象负责管理读操作的挂起和恢复。

这些对象会在协程尝试进行不可能立即完成的操作(如写入一个满的缓冲区或从空的缓冲区读取)时挂起协程。当操作变得可行时(如缓冲区有空间可写或有数据可读),相关的 Awaiter 会恢复协程的执行。

try_push_writer 和 try_push_reader

try_push_writer 调用时,意味着有一个新的写入者挂起准备写入值到 Channel 当中,这时候有以下几种情况:

  • Channel 当中有挂起的读取者,写入者直接将要写入的值传给读取者,恢复读取者,恢复写入者。
  • Channel 的 buffer 没满,写入者把值写入 buffer,然后立即恢复执行。
  • Channel 的 buffer 已满,则写入者被存入挂起列表(writer_list)等待新的读取者读取时再恢复。
void try_push_writer(WriterAwaiter<ValueType> *writer_awaiter) {std::unique_lock lock(channel_lock);check_closed();// 检查有没有挂起的读取者,对应情况 1if (!reader_list.empty()) {auto reader = reader_list.front();reader_list.pop_front();lock.unlock();reader->resume(writer_awaiter->_value);writer_awaiter->resume();return;}// buffer 未满,对应情况 2if (buffer.size() < buffer_capacity) {buffer.push(writer_awaiter->_value);lock.unlock();writer_awaiter->resume();return;}// buffer 已满,对应情况 3writer_list.push_back(writer_awaiter);
}

相对应的,try_push_reader 调用时,意味着有一个新的读取者挂起准备从 Channel 当中读取值,这时候有以下几种情况:

  • Channel 的 buffer 非空,读取者从 buffer 当中读取值,如果此时有挂起的写入者,需要去队头的写入者将值写入 buffer,然后立即恢复该写入者和当次的读取者。
  • Channel 当中有挂起的写入者,写入者直接将要写入的值传给读取者,恢复读取者,恢复写入者
  • Channel 的 buffer 为空,则读取者被存入挂起列表(reader_list)等待新的写入者写入时再恢复。
void try_push_reader(ReaderAwaiter<ValueType> *reader_awaiter) {std::unique_lock lock(channel_lock);check_closed();// buffer 非空,对应情况 1if (!buffer.empty()) {auto value = buffer.front();buffer.pop();if (!writer_list.empty()) {// 有挂起的写入者要及时将其写入 buffer 并恢复执行auto writer = writer_list.front();writer_list.pop_front();buffer.push(writer->_value);lock.unlock();writer->resume();} else {lock.unlock();}reader_awaiter->resume(value);return;}// 有写入者挂起,对应情况 2if (!writer_list.empty()) {auto writer = writer_list.front();writer_list.pop_front();lock.unlock();reader_awaiter->resume(writer->_value);writer->resume();return;}// buffer 为空,对应情况 3reader_list.push_back(reader_awaiter);
}

监听协程的提前销毁

观察上述代码,Channel 对象必须在持有 Channel 实例的协程退出之前关闭。在 Channel 当中持有了已经挂起的读写协程的 Awaiter 的指针,一旦协程销毁,这些 Awaiter 也会被销毁,Channel 在关闭时试图恢复这些读写协程时就会出现程序崩溃(访问了野指针)。

为了解决这个问题,需要在 Awaiter 销毁时主动将自己的指针从 Channel 当中移除。

template<typename ValueType>
struct ReaderAwaiter {ReaderAwaiter(ReaderAwaiter&& other) noexcept: channel(std::exchange(other.channel, nullptr)),executor(std::exchange(other.executor, nullptr)),_value(other._value),p_value(std::exchange(other.p_value, nullptr)),handle(other.handle) {}int await_resume() {auto channel = this->channel;this->channel = nullptr;channel->check_closed();return _value;}~ReaderAwaiter() {if (channel) channel->remove_reader(this);}
}

实现了移动构造函数,ReaderAwaiter在被移动后会将原对象的channel指针置为nullptr。原来的Awaiter对象不再与任何Channel关联,从而防止在原Awaiter对象被销毁时误操作已移走的资源。

协程恢复时将自身持有的channel指针置空。这是因为当协程由于await表达式被挂起后恢复执行时,await_resume()被调用以继续执行协程。将channel设置为nullptr之后,如果在后续的执行中再次错误地或意外地引用了channel,这将直接导致访问空指针错误而非进行无效或危险的操作。

在ReaderAwaiter的析构函数中,如果其channel成员变量仍然非空,表明该Awaiter可能在协程尚未恢复执行前被销毁(例如协程的异常退出或提前结束)。在这种情况下,Awaiter负责通知Channel从其等待列表中移除自己,确保Channel不会在未来尝试访问已经销毁的Awaiter。

对应的,Channel 当中也需要增加 remove_reader 函数:

template<typename ValueType>
struct Channel {void remove_reader(ReaderAwaiter<ValueType> *reader_awaiter) {// 并发环境,修改 reader_list 的操作都需要加锁std::lock_guard lock(channel_lock);reader_list.remove(reader_awaiter);}
}

WriterAwaiter 的修改类似,之后即使把正在等待读写 Channel 的协程提前结束销毁,也不会影响 Channel 的继续使用以及后续的正常关闭了。

结果展示

测试代码如下所示

Task<void, LooperExecutor> Producer(Channel<int>& channel) {int i = 0;while (i < 10) {debug("send: ", i);co_await(channel << i++);co_await 50ms;}co_await 5s;channel.close();debug("close channel, exit.");
}Task<void, LooperExecutor> Consumer(Channel<int>& channel) {while (channel.is_active()) {try {int received;co_await(channel >> received);debug("receive: ", received);co_await 500ms;}catch (std::exception& e) {//}}debug("exit.");
}Task<void, LooperExecutor> Consumer2(Channel<int>& channel) {while (channel.is_active()) {try {auto received = co_await channel.read();debug("receive2: ", received);co_await 300ms;}catch (std::exception& e) {//}}debug("exit.");
}
// co_wait 时间也会有run_loop exit.
void test_channel() {debug("test_channel()");auto channel = Channel<int>(5);auto producer = Producer(channel);auto consumer = Consumer(channel);auto consumer2 = Consumer2(channel);std::this_thread::sleep_for(10s);
}int main() {test_channel();return 0;
}

完整代码见个人github的Coroutines项目。

Current time: 19:47.300 18784 send:  0
Current time: 19:47.300 26408 receive2:  0
Current time: 19:47.356 18784 send:  1
Current time: 19:47.357 38656 receive:  1
Current time: 19:47.419 18784 send:  2
Current time: 19:47.482 18784 send:  3
Current time: 19:47.545 18784 send:  4
Current time: 19:47.607 18784 send:  5
Current time: 19:47.607 26408 receive2:  2
Current time: 19:47.669 18784 send:  6
Current time: 19:47.731 18784 send:  7
Current time: 19:47.791 18784 send:  8
Current time: 19:47.869 38656 receive:  3
Current time: 19:47.915 26408 receive2:  4
Current time: 19:47.931 18784 send:  9
Current time: 19:48.224 26408 receive2:  5
Current time: 19:48.379 38656 receive:  6
Current time: 19:48.532 26408 receive2:  7
Current time: 19:48.839 26408 receive2:  8
Current time: 19:48.886 38656 receive:  9

基本符合其中的等待时间和处理逻辑。

这篇关于探究C++20协程(6)——实现协程之间消息传递的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/935485

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景