【分布式通信】NPKit,NCCL的Profiling工具

2024-04-25 15:44

本文主要是介绍【分布式通信】NPKit,NCCL的Profiling工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NPKit介绍

NPKit (Networking Profiling Kit) is a profiling framework designed for popular collective communication libraries (CCLs), including Microsoft MSCCL, NVIDIA NCCL and AMD RCCL.
It enables users to insert customized profiling events into different CCL components, especially into giant GPU kernels.
These events are then automatically placed onto a unified timeline in Google Trace Event Format, which users can then leverage trace viewer to understand CCLs’ workflow and performance.

以NCCL为例,如何使用?

Usage

  1. NCCL 2.17.1-1版本,将文件夹下的 npkit-for-nccl-2.17.1-1.diff 添加到你的nccl源文件中。

  2. NPKit只有在CPU和GPU没以后overlap的时候使用,所以 NPKIT_FLAGS 也要遵从这个规则。同时 npkit_launcher.sh里面的参数也要对应正确。

  3. nccl_testnpkit_runner.sh对应参数正确. 仅支持每个线程有1个GPU, 因此nccl_test运行参数记得是 -g 1

  4. 运行bash npkit_launcher.sh.

  5. 生成文件 npkit_event_trace.json ,可以用谷歌浏览器打开看。在浏览器那一栏输入chrome://tracing, 然后打开对应文件即可。

在这里插入图片描述

import argparse
import os
import jsonfrom queue import Queuedef parse_npkit_event_header(npkit_event_header_path):npkit_event_def = {'id_to_type': {}, 'type_to_id': {}}with open(npkit_event_header_path, 'r') as f:lines = [x.strip() for x in f.readlines() if len(x.strip()) != 0]line_idx = 0while line_idx < len(lines):if lines[line_idx].startswith('#define NPKIT_EVENT_'):fields = lines[line_idx].split()if len(fields) == 3:event_type = fields[1]event_id = int(fields[2], 0)npkit_event_def['type_to_id'][event_type] = event_idnpkit_event_def['id_to_type'][event_id] = event_typeline_idx += 1return npkit_event_defdef parse_gpu_clock_scale(gpu_clock_file_path):with open(gpu_clock_file_path, 'r') as f:freq_in_khz = f.read()return float(freq_in_khz) * 1e3 / 1e6def parse_cpu_clock_scale(cpu_clock_den_file_path, cpu_clock_num_file_path):with open(cpu_clock_num_file_path, 'r') as f:num = float(f.read())with open(cpu_clock_den_file_path, 'r') as f:den = float(f.read())return den / num / 1e6def parse_gpu_event(event_bytes):return {'id': int.from_bytes(event_bytes[0:1], byteorder='little', signed=False),'size': int.from_bytes(event_bytes[1:5], byteorder='little', signed=False),'rsvd': int.from_bytes(event_bytes[5:8], byteorder='little', signed=False),'timestamp': int.from_bytes(event_bytes[8:16], byteorder='little', signed=False)}def parse_cpu_event(event_bytes):return {'id': int.from_bytes(event_bytes[0:1], byteorder='little', signed=False),'size': int.from_bytes(event_bytes[1:5], byteorder='little', signed=False),'slot': int.from_bytes(event_bytes[5:8], byteorder='little', signed=False),'timestamp': int.from_bytes(event_bytes[8:16], byteorder='little', signed=False)}def parse_gpu_event_file(npkit_dump_dir, npkit_event_def, rank, buf_idx, gpu_clock_scale, cpu_clock_scale):gpu_event_file_path = os.path.join(npkit_dump_dir, 'gpu_events_rank_%d_buf_%d' % (rank, buf_idx))raw_event_size = 16curr_cpu_base_time = Nonecurr_gpu_base_time = Nonegpu_events = []event_type_to_seq = {}with open(gpu_event_file_path, 'rb') as f:raw_content = f.read()raw_content_size = len(raw_content)raw_content_idx = 0while raw_content_idx < raw_content_size:parsed_gpu_event = parse_gpu_event(raw_content[raw_content_idx : raw_content_idx + raw_event_size])if npkit_event_def['id_to_type'][parsed_gpu_event['id']] == 'NPKIT_EVENT_TIME_SYNC_CPU':curr_cpu_base_time = parsed_gpu_event['timestamp'] / cpu_clock_scalecurr_gpu_base_time = Noneelif npkit_event_def['id_to_type'][parsed_gpu_event['id']] == 'NPKIT_EVENT_TIME_SYNC_GPU':if curr_gpu_base_time is None:curr_gpu_base_time = parsed_gpu_event['timestamp'] / gpu_clock_scaleelse:if curr_gpu_base_time is None:curr_gpu_base_time = parsed_gpu_event['timestamp'] / gpu_clock_scaleevent_type = npkit_event_def['id_to_type'][parsed_gpu_event['id']]phase = 'B' if event_type.endswith('_ENTRY') else 'E'gpu_events.append({'ph': phase,'ts': curr_cpu_base_time + parsed_gpu_event['timestamp'] / gpu_clock_scale - curr_gpu_base_time,'pid': rank,'tid': buf_idx + 1})if phase == 'B':if event_type not in event_type_to_seq:event_type_to_seq[event_type] = 0gpu_events[-1].update({'name': event_type,'cat': 'GPU','args': {'rank': rank,'buf_idx': buf_idx,'seq': event_type_to_seq[event_type],'rsvd_0': parsed_gpu_event['rsvd'],'size_0': parsed_gpu_event['size']}})event_type_to_seq[event_type] += 1else:gpu_events[-1]['args'] = {'size': parsed_gpu_event['size'], 'rsvd': parsed_gpu_event['rsvd']}delta_time = gpu_events[-1]['ts'] - gpu_events[-2]['ts']gpu_events[-1]['args']['bw (GB/s)'] = 0. if delta_time == 0. else gpu_events[-1]['args']['size'] / delta_time / 1e3raw_content_idx += raw_event_sizereturn gpu_eventsdef parse_cpu_event_file(npkit_dump_dir, npkit_event_def, rank, channel, cpu_clock_scale):cpu_event_file_path = os.path.join(npkit_dump_dir, 'cpu_events_rank_%d_channel_%d' % (rank, channel))raw_event_size = 16cpu_events = []event_type_to_seq = {}fiber_is_usable = []fiber_open_ts = []slot_to_fiber_id = {}channel_shift = 1000with open(cpu_event_file_path, 'rb') as f:raw_content = f.read()raw_content_size = len(raw_content)raw_content_idx = 0while raw_content_idx < raw_content_size:parsed_cpu_event = parse_cpu_event(raw_content[raw_content_idx : raw_content_idx + raw_event_size])event_type = npkit_event_def['id_to_type'][parsed_cpu_event['id']]phase = 'B' if event_type.endswith('_ENTRY') else 'E'cpu_events.append({'ph': phase,'ts': parsed_cpu_event['timestamp'] / cpu_clock_scale,'pid': rank})slot = parsed_cpu_event['slot']if phase == 'B':# Open fiber eventfiber_id = 0while fiber_id < len(fiber_is_usable):if fiber_is_usable[fiber_id]:breakfiber_id += 1if fiber_id == len(fiber_is_usable):fiber_is_usable.append(True)fiber_open_ts.append(0.0)slot_to_fiber_id[slot] = fiber_idfiber_open_ts[fiber_id] = cpu_events[-1]['ts']fiber_is_usable[fiber_id] = Falseif event_type not in event_type_to_seq:event_type_to_seq[event_type] = 0cpu_events[-1].update({'name': event_type,'cat': 'CPU','args': {'rank': rank,'channel': channel,'slot': parsed_cpu_event['slot'],'seq': event_type_to_seq[event_type],'size_0': parsed_cpu_event['size']}})event_type_to_seq[event_type] += 1else:# Close fiber eventfiber_id = slot_to_fiber_id[slot]slot_to_fiber_id.pop(slot)last_ts = fiber_open_ts[fiber_id]fiber_is_usable[fiber_id] = Truedelta_time = max(0.001, cpu_events[-1]['ts'] - last_ts)cpu_events[-1]['args'] = {'size': parsed_cpu_event['size']}cpu_events[-1]['args']['bw (GB/s)'] = 0. if delta_time == 0. else cpu_events[-1]['args']['size'] / delta_time / 1e3cpu_events[-1]['tid'] = fiber_id + (channel + 1) * channel_shiftraw_content_idx += raw_event_sizereturn cpu_eventsdef convert_npkit_dump_to_trace(npkit_dump_dir, output_dir, npkit_event_def):files_in_dump_dir = next(os.walk(npkit_dump_dir))[2]gpu_event_files = [x for x in files_in_dump_dir if x.startswith('gpu_events_rank_')]cpu_event_files = [x for x in files_in_dump_dir if x.startswith('cpu_events_rank_')]ranks = list(set([int(x.split('_rank_')[1].split('_')[0]) for x in gpu_event_files]))buf_indices = list(set([int(x.split('_buf_')[1].split('_')[0]) for x in gpu_event_files]))channels = list(set([int(x.split('_channel_')[1].split('_')[0]) for x in cpu_event_files]))trace = {'traceEvents': []}for rank in ranks:cpu_clock_den_file_path = os.path.join(npkit_dump_dir, 'cpu_clock_period_den_rank_%d' % rank)cpu_clock_num_file_path = os.path.join(npkit_dump_dir, 'cpu_clock_period_num_rank_%d' % rank)cpu_clock_scale = parse_cpu_clock_scale(cpu_clock_den_file_path, cpu_clock_num_file_path)gpu_clock_file_path = os.path.join(npkit_dump_dir, 'gpu_clock_rate_rank_%d' % rank)gpu_clock_scale = parse_gpu_clock_scale(gpu_clock_file_path)for buf_idx in buf_indices:gpu_events = parse_gpu_event_file(npkit_dump_dir, npkit_event_def, rank, buf_idx, gpu_clock_scale, cpu_clock_scale)trace['traceEvents'].extend(gpu_events)for channel in channels:cpu_events = parse_cpu_event_file(npkit_dump_dir, npkit_event_def, rank, channel, cpu_clock_scale)trace['traceEvents'].extend(cpu_events)trace['traceEvents'].sort(key=lambda x : x['ts'])trace['displayTimeUnit'] = 'ns'os.makedirs(output_dir, exist_ok=True)with open(os.path.join(output_dir, 'npkit_event_trace.json'), 'w') as f:json.dump(trace, f)if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--npkit_dump_dir', type=str, required=True, help='NPKit dump directory.')parser.add_argument('--npkit_event_header_path', type=str, required=True, help='Path to npkit_event.h.')parser.add_argument('--output_dir', type=str, required=True, help='Path to output directory.')args = parser.parse_args()npkit_event_def = parse_npkit_event_header(args.npkit_event_header_path)convert_npkit_dump_to_trace(args.npkit_dump_dir, args.output_dir, npkit_event_def)

这篇关于【分布式通信】NPKit,NCCL的Profiling工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/935100

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

sqlite3 命令行工具使用指南

《sqlite3命令行工具使用指南》本文系统介绍sqlite3CLI的启动、数据库操作、元数据查询、数据导入导出及输出格式化命令,涵盖文件管理、备份恢复、性能统计等实用功能,并说明命令分类、SQL语... 目录一、启动与退出二、数据库与文件操作三、元数据查询四、数据操作与导入导出五、查询输出格式化六、实用功

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结