穿越障碍:最小路径和的高效算法比较【python力扣题64】

2024-04-25 12:36

本文主要是介绍穿越障碍:最小路径和的高效算法比较【python力扣题64】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给定一个包含非负整数的 m x n 网格 grid,现在你需要找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

:每次只能向下或者向右移动一步。

输入格式
  • grid:二维数组,其中的元素表示网格中的点的值。
输出格式
  • 返回一个整数,表示所有可能路径中的最小和。

示例

示例 1
输入: grid = [[1,3,1],[1,5,1],[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
示例 2
输入: grid = [[1,2,3],[4,5,6]
]
输出: 12

方法一:动态规划

解题步骤
  1. 定义状态:创建一个同样大小的二维数组 dp,其中 dp[i][j] 表示到达点 (i, j) 的最小路径和。
  2. 初始化状态:第一行和第一列的元素只能由它的左边或上边来,所以是累加当前行或列的值。
  3. 状态转移:对于其他位置,dp[i][j] 由它的左边和上边的较小值加上当前网格值得到,即 dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
  4. 返回结果dp[m-1][n-1] 即为最小路径和。
完整的规范代码
def minPathSum(grid):"""使用动态规划解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])dp = [[0]*n for _ in range(m)]dp[0][0] = grid[0][0]for i in range(1, m):dp[i][0] = dp[i-1][0] + grid[i][0]for j in range(1, n):dp[0][j] = dp[0][j-1] + grid[0][j]for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]return dp[m-1][n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(m * n)),使用了一个同样大小的二维数组。

方法二:空间优化的动态规划

解题步骤
  1. 使用一维数组:只用一个长度为 n 的数组来保存当前行的 dp 值。
  2. 迭代更新:每次更新时,dp[j] 更新为 dp[j](从上一行继承下来的,即上方)和 dp[j-1](当前行左边的,即左方)中的较小值加上当前点的值。
完整的规范代码
def minPathSum(grid):"""使用一维数组进行动态规划,空间优化版本:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])dp = [0] * ndp[0] = grid[0][0]for j in range(1, n):dp[j] = dp[j-1] + grid[0][j]for i in range(1, m):dp[0] += grid[i][0]for j in range(1, n):dp[j] = min(dp[j-1], dp[j]) + grid[i][j]return dp[n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(n)),使用了一个长度为列数 n 的数组。

方法三:递归 + 记忆化

解题步骤
  1. 递归定义:定义一个递归函数,用于计算到达 (i, j) 的最小路径和。
  2. 记忆化存储:使用一个字典或数组来存储已经计算过的结果,避免重复计算。
完整的规范代码
def minPathSum(grid):"""使用递归和记忆化搜索解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""from functools import lru_cachem, n = len(grid), len(grid[0])@lru_cache(None)def dfs(i, j):if i == 0 and j == 0:return grid[i][j]if i < 0 or j < 0:return float('inf')return grid[i][j] + min(dfs(i-1, j), dfs(i, j-1))return dfs(m-1, n-1)# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),每个点最多计算一次,利用记忆化避免重复计算。
  • 空间复杂度:(O(m * n)),记忆化需要的空间。

方法四:从终点到起点的动态规划

解题步骤
  1. 反向动态规划:从网格的右下角开始,向左上角逐步计算。
  2. 更新规则:每个点的最小路径和取决于其右边和下边的点的最小路径和。
完整的规范代码
def minPathSum(grid):"""使用反向动态规划解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])for i in range(m-2, -1, -1):grid[i][n-1] += grid[i+1][n-1]for j in range(n-2, -1, -1):grid[m-1][j] += grid[m-1][j+1]for i in range(m-2, -1, -1):for j in range(n-2, -1, -1):grid[i][j] += min(grid[i+1][j], grid[i][j+1])return grid[0][0]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(1)),直接在输入网格上进行修改,不需要额外空间。

方法五:改进的BFS

解题步骤
  1. 队列实现BFS:使用队列来实现广度优先搜索,每次处理一层。
  2. 累计最小和:使用额外的二维数组来保存到每个点的最小路径和。
  3. 优先队列优化:使用优先队列(小顶堆)来优先处理当前路径和最小的节点,以快速找到最小路径和。
完整的规范代码
from heapq import heappush, heappopdef minPathSum(grid):"""使用改进的BFS和优先队列解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])minHeap = [(grid[0][0], 0, 0)]  # (cost, x, y)costs = [[float('inf')] * n for _ in range(m)]costs[0][0] = grid[0][0]while minHeap:cost, x, y = heappop(minHeap)for dx, dy in [(1, 0), (0, 1)]:nx, ny = x + dx, y + dyif 0 <= nx < m and 0 <= ny < n:new_cost = cost + grid[nx][ny]if new_cost < costs[nx][ny]:costs[nx][ny] = new_costheappush(minHeap, (new_cost, nx, ny))return costs[m-1][n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n \log(m * n))),每个节点可能多次进入堆。
  • 空间复杂度:(O(m * n)),用于存储路径成本和堆结构。

不同算法的优劣势对比

特征方法一: 动态规划方法二: 空间优化DP方法三: 递归+记忆化方法四: 反向DP方法五: BFS+优先队列
时间复杂度(O(m * n))(O(m * n))(O(m * n))(O(m * n))(O(m * n \log(m * n)))
空间复杂度(O(m * n))(O(n))(O(m * n))(O(1))(O(m * n))
优势直观,易理解空间效率高避免重复计算,减少计算次数不需要额外空间,原地修改可以更快地找到最小路径和
劣势空间占用高仅限于列优化需要辅助空间存储递归状态修改输入数据计算和空间复杂度较高

应用示例

机器人导航系统
在自动化仓库或智能制造系统中,机器人需要找到成本最低的路径来移动货物或执行任务。动态规划方法可以有效地计算出从起点到终点的最低成本路径,提高系统的效率和响应速度。此外,实时路径规划系统可以利用优先队列优化的BFS来快速调整路径,以应对动态变化的环境条件,如临时障碍或优先级任务。

这篇关于穿越障碍:最小路径和的高效算法比较【python力扣题64】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/934695

相关文章

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t