穿越障碍:最小路径和的高效算法比较【python力扣题64】

2024-04-25 12:36

本文主要是介绍穿越障碍:最小路径和的高效算法比较【python力扣题64】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给定一个包含非负整数的 m x n 网格 grid,现在你需要找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

:每次只能向下或者向右移动一步。

输入格式
  • grid:二维数组,其中的元素表示网格中的点的值。
输出格式
  • 返回一个整数,表示所有可能路径中的最小和。

示例

示例 1
输入: grid = [[1,3,1],[1,5,1],[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
示例 2
输入: grid = [[1,2,3],[4,5,6]
]
输出: 12

方法一:动态规划

解题步骤
  1. 定义状态:创建一个同样大小的二维数组 dp,其中 dp[i][j] 表示到达点 (i, j) 的最小路径和。
  2. 初始化状态:第一行和第一列的元素只能由它的左边或上边来,所以是累加当前行或列的值。
  3. 状态转移:对于其他位置,dp[i][j] 由它的左边和上边的较小值加上当前网格值得到,即 dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
  4. 返回结果dp[m-1][n-1] 即为最小路径和。
完整的规范代码
def minPathSum(grid):"""使用动态规划解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])dp = [[0]*n for _ in range(m)]dp[0][0] = grid[0][0]for i in range(1, m):dp[i][0] = dp[i-1][0] + grid[i][0]for j in range(1, n):dp[0][j] = dp[0][j-1] + grid[0][j]for i in range(1, m):for j in range(1, n):dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]return dp[m-1][n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(m * n)),使用了一个同样大小的二维数组。

方法二:空间优化的动态规划

解题步骤
  1. 使用一维数组:只用一个长度为 n 的数组来保存当前行的 dp 值。
  2. 迭代更新:每次更新时,dp[j] 更新为 dp[j](从上一行继承下来的,即上方)和 dp[j-1](当前行左边的,即左方)中的较小值加上当前点的值。
完整的规范代码
def minPathSum(grid):"""使用一维数组进行动态规划,空间优化版本:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])dp = [0] * ndp[0] = grid[0][0]for j in range(1, n):dp[j] = dp[j-1] + grid[0][j]for i in range(1, m):dp[0] += grid[i][0]for j in range(1, n):dp[j] = min(dp[j-1], dp[j]) + grid[i][j]return dp[n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(n)),使用了一个长度为列数 n 的数组。

方法三:递归 + 记忆化

解题步骤
  1. 递归定义:定义一个递归函数,用于计算到达 (i, j) 的最小路径和。
  2. 记忆化存储:使用一个字典或数组来存储已经计算过的结果,避免重复计算。
完整的规范代码
def minPathSum(grid):"""使用递归和记忆化搜索解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""from functools import lru_cachem, n = len(grid), len(grid[0])@lru_cache(None)def dfs(i, j):if i == 0 and j == 0:return grid[i][j]if i < 0 or j < 0:return float('inf')return grid[i][j] + min(dfs(i-1, j), dfs(i, j-1))return dfs(m-1, n-1)# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),每个点最多计算一次,利用记忆化避免重复计算。
  • 空间复杂度:(O(m * n)),记忆化需要的空间。

方法四:从终点到起点的动态规划

解题步骤
  1. 反向动态规划:从网格的右下角开始,向左上角逐步计算。
  2. 更新规则:每个点的最小路径和取决于其右边和下边的点的最小路径和。
完整的规范代码
def minPathSum(grid):"""使用反向动态规划解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])for i in range(m-2, -1, -1):grid[i][n-1] += grid[i+1][n-1]for j in range(n-2, -1, -1):grid[m-1][j] += grid[m-1][j+1]for i in range(m-2, -1, -1):for j in range(n-2, -1, -1):grid[i][j] += min(grid[i+1][j], grid[i][j+1])return grid[0][0]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n)),需要遍历整个网格一次。
  • 空间复杂度:(O(1)),直接在输入网格上进行修改,不需要额外空间。

方法五:改进的BFS

解题步骤
  1. 队列实现BFS:使用队列来实现广度优先搜索,每次处理一层。
  2. 累计最小和:使用额外的二维数组来保存到每个点的最小路径和。
  3. 优先队列优化:使用优先队列(小顶堆)来优先处理当前路径和最小的节点,以快速找到最小路径和。
完整的规范代码
from heapq import heappush, heappopdef minPathSum(grid):"""使用改进的BFS和优先队列解决最小路径和问题:param grid: List[List[int]], 网格:return: int, 最小路径和"""m, n = len(grid), len(grid[0])minHeap = [(grid[0][0], 0, 0)]  # (cost, x, y)costs = [[float('inf')] * n for _ in range(m)]costs[0][0] = grid[0][0]while minHeap:cost, x, y = heappop(minHeap)for dx, dy in [(1, 0), (0, 1)]:nx, ny = x + dx, y + dyif 0 <= nx < m and 0 <= ny < n:new_cost = cost + grid[nx][ny]if new_cost < costs[nx][ny]:costs[nx][ny] = new_costheappush(minHeap, (new_cost, nx, ny))return costs[m-1][n-1]# 示例调用
print(minPathSum([[1,3,1],[1,5,1],[4,2,1]
]))  # 输出: 7
print(minPathSum([[1,2,3],[4,5,6]
]))  # 输出: 12
算法分析
  • 时间复杂度:(O(m * n \log(m * n))),每个节点可能多次进入堆。
  • 空间复杂度:(O(m * n)),用于存储路径成本和堆结构。

不同算法的优劣势对比

特征方法一: 动态规划方法二: 空间优化DP方法三: 递归+记忆化方法四: 反向DP方法五: BFS+优先队列
时间复杂度(O(m * n))(O(m * n))(O(m * n))(O(m * n))(O(m * n \log(m * n)))
空间复杂度(O(m * n))(O(n))(O(m * n))(O(1))(O(m * n))
优势直观,易理解空间效率高避免重复计算,减少计算次数不需要额外空间,原地修改可以更快地找到最小路径和
劣势空间占用高仅限于列优化需要辅助空间存储递归状态修改输入数据计算和空间复杂度较高

应用示例

机器人导航系统
在自动化仓库或智能制造系统中,机器人需要找到成本最低的路径来移动货物或执行任务。动态规划方法可以有效地计算出从起点到终点的最低成本路径,提高系统的效率和响应速度。此外,实时路径规划系统可以利用优先队列优化的BFS来快速调整路径,以应对动态变化的环境条件,如临时障碍或优先级任务。

这篇关于穿越障碍:最小路径和的高效算法比较【python力扣题64】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934695

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主