octave实现协同过滤推荐算法

2024-04-25 12:18

本文主要是介绍octave实现协同过滤推荐算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

octave实现协同过滤推荐算法

标签:推荐算法

这是对关于电影评分的数据集使用协同过滤算法,实现推荐系统。

数据来源为:电影数据

  1. 先从本地导入数据(代码如下):
%  导入数据
load ('ex8_movies.mat');
  1. 现在对矩阵可视化看看:
    矩阵可视化图片

  2. 我们可以看出,该图为Y的输出,横轴为用户,纵轴为电影,所以 Y Y 矩阵是
    nummoviesnumusers

另外对于 R R 矩阵,其Rij=1ij
另外代码中常会看到两个矩阵:
矩阵图
X大小为电影数*特征数,第i行代表第i部电影的特征,Theta大小为用户数*特征数,第j行代表第j个用户对应的参数。

4.现在开始求代价函数
代码如下:

J = 1/2 * (sum(sum(R .* (((X * Theta') - Y).^2) ))) ;
%正则化
J = J + lambda/2 * (sum(sum(X.^2))) + lambda/2 * (sum(sum(Theta.^2))) ;%梯度下降
X_grad = (R .* (X * Theta' - Y)) * Theta ;
X_grad = X_grad + lambda * X ;Theta_grad = (R .* (X * Theta' - Y))' * X ;
Theta_grad = Theta_grad + lambda * Theta ;

其中,经过正则化的公式为:
公式图片

我们更新参数公式中,损失函数梯度(这里没打出正则化,代码里正则化了)为:
梯度下降图片

调用为:

%% ========= Part 4: Collaborative Filtering Cost Regularization ========
%  Now, you should implement regularization for the cost function for 
%  collaborative filtering. You can implement it by adding the cost of
%  regularization to the original cost computation.
%  %  Evaluate cost function
J = cofiCostFunc([X(:) ; Theta(:)], Y, R, num_users, num_movies, ...num_features, 1.5);fprintf(['Cost at loaded parameters (lambda = 1.5): %f '...'\n(this value should be about 31.34)\n'], J);fprintf('\nProgram paused. Press enter to continue.\n');
pause;

好,有了这些,再加上Octave中的无约束最小化优化函数,就可以直接训练了(下面是这个优化函数调用的代码):

theta = fmincg (@(t)(cofiCostFunc(t, Y, R, num_users, num_movies, ...num_features, lambda)), ...initial_parameters, options);

现在可以看看对于一个用户它的效果了:


这里来了一个用户,且有该用户对几个电影的评分,代码如下:

%% ============== Part 6: Entering ratings for a new user ===============
%  Before we will train the collaborative filtering model, we will first
%  add ratings that correspond to a new user that we just observed. This
%  part of the code will also allow you to put in your own ratings for the
%  movies in our dataset!
%
movieList = loadMovieList();%  Initialize my ratings
my_ratings = zeros(1682, 1);% Check the file movie_idx.txt for id of each movie in our dataset
% For example, Toy Story (1995) has ID 1, so to rate it "4", you can set
my_ratings(1) = 4;% Or suppose did not enjoy Silence of the Lambs (1991), you can set
my_ratings(98) = 2;% We have selected a few movies we liked / did not like and the ratings we
% gave are as follows:
my_ratings(7) = 3;
my_ratings(12)= 10;
my_ratings(54) = 4;
my_ratings(64)= 10;
my_ratings(66)= 3;
my_ratings(69) = 10;
my_ratings(183) = 4;
my_ratings(226) = 10;
my_ratings(355)= 10;fprintf('\n\nNew user ratings:\n');
for i = 1:length(my_ratings)if my_ratings(i) > 0 fprintf('Rated %d for %s\n', my_ratings(i), ...movieList{i});end
endfprintf('\nProgram paused. Press enter to continue.\n');
pause;

其中LoadmovieList()导入了如下的电影(其实是我选了几个,另外几个随便选的)

New user ratings:
Rated 4 for Toy Story (1995)
Rated 3 for Twelve Monkeys (1995)
Rated 10 for Usual Suspects, The (1995)
Rated 4 for Outbreak (1995)
Rated 10 for Shawshank Redemption, The (1994)
Rated 3 for While You Were Sleeping (1995)
Rated 10 for Forrest Gump (1994)
Rated 2 for Silence of the Lambs, The (1991)
Rated 4 for Alien (1979)
Rated 10 for Die Hard 2 (1990)
Rated 10 for Sphere (1998)

现在开始训练参数了:

%% ================== Part 7: Learning Movie Ratings ====================
%  Now, you will train the collaborative filtering model on a movie rating 
%  dataset of 1682 movies and 943 users
%fprintf('\nTraining collaborative filtering...\n');%  Load data
load('ex8_movies.mat');%  Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies by 
%  943 users
%
%  R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a
%  rating to movie i%  Add our own ratings to the data matrix
Y = [my_ratings Y];
R = [(my_ratings ~= 0) R];%  Normalize Ratings
[Ynorm, Ymean] = normalizeRatings(Y, R);%  Useful Values
num_users = size(Y, 2);
num_movies = size(Y, 1);
num_features = 10;% Set Initial Parameters (Theta, X)
X = randn(num_movies, num_features);
Theta = randn(num_users, num_features);initial_parameters = [X(:); Theta(:)];% Set options for fmincg
options = optimset('GradObj', 'on', 'MaxIter', 100);% Set Regularization
lambda = 10;
theta = fmincg (@(t)(cofiCostFunc(t, Ynorm, R, num_users, num_movies, ...num_features, lambda)), ...initial_parameters, options);% Unfold the returned theta back into U and W
X = reshape(theta(1:num_movies*num_features), num_movies, num_features);
Theta = reshape(theta(num_movies*num_features+1:end), ...num_users, num_features);fprintf('Recommender system learning completed.\n');fprintf('\nProgram paused. Press enter to continue.\n');
pause;

然后,开始推荐:

%% ================== Part 8: Recommendation for you ====================
%  After training the model, you can now make recommendations by computing
%  the predictions matrix.
%p = X * Theta';
my_predictions = p(:,1) + Ymean;movieList = loadMovieList();[r, ix] = sort(my_predictions, 'descend');
fprintf('\nTop recommendations for you:\n');
for i=1:10j = ix(i);fprintf('Predicting rating %.1f for movie %s\n', my_predictions(j), ...movieList{j});
endfprintf('\n\nOriginal ratings provided:\n');
for i = 1:length(my_ratings)if my_ratings(i) > 0 fprintf('Rated %d for %s\n', my_ratings(i), ...movieList{i});end
end

结果推荐了这几部电影:

Top recommendations for you:
Predicting rating 6.5 for movie Forrest Gump (1994)
Predicting rating 6.3 for movie Return of the Jedi (1983)
Predicting rating 6.3 for movie Star Wars (1977)
Predicting rating 6.2 for movie Raiders of the Lost Ark (1981)
Predicting rating 6.1 for movie Shawshank Redemption, The (1994)
Predicting rating 6.1 for movie Empire Strikes Back, The (1980)
Predicting rating 6.0 for movie Braveheart (1995)
Predicting rating 6.0 for movie Titanic (1997)
Predicting rating 5.8 for movie Back to the Future (1985)
Predicting rating 5.8 for movie Game, The (1997)

好吧,我也没看过,都是很老的电影。。。我也不知道推荐的准不准。。。

这篇关于octave实现协同过滤推荐算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934663

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja