H264编码标准中游程编码应用介绍

2024-04-25 05:04

本文主要是介绍H264编码标准中游程编码应用介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

H264编码标准

H.264编码标准,也被称作MPEG-4 AVC(Advanced Video Coding),是一种被广泛使用的数字视频压缩标准。它由国际电信联盟(ITU-T)和国际标准化组织(ISO)共同开发,旨在提供比以往标准更高的视频压缩效率,同时保持或提高视频质量。

主要特点:

  • 高压缩率:H.264能够在保持高质量的同时提供高压缩比,这使得它非常适合网络传输和存储。
  • 多种分辨率和帧率支持:H.264支持从低分辨率到高分辨率的多种格式,以及不同的帧率,使其应用范围非常广泛。
  • 帧内和帧间预测:H.264使用帧内预测和帧间预测技术来减少图像的冗余信息,提高压缩效率。
  • 变换编码:采用整数变换编码技术,将图像数据从空间域转换到频域。
  • 量化:H.264的量化算法更加精细,支持可变量化参数,适应不同的应用场景和传输条件。
  • 环路滤波:采用先进的环路滤波技术,对解码后的图像进行后处理,减少压缩带来的图像失真。

应用场景:
H.264因其出色的压缩性能和图像质量,被广泛应用于视频监控、视频会议、流媒体服务、数字电视广播等领域。

参考代码

  • JM:https://iphome.hhi.de/suehring/
    在这里插入图片描述

  • x264:https://www.videolan.org/developers/x264.html

git clone https://code.videolan.org/videolan/x264.git

在这里插入图片描述

  • openh264:https://github.com/cisco/openh264
    在这里插入图片描述

游程编码

行程编码(Run Length Encoding,RLE),又称游程编码、行程长度编码、变动长度编码等,是一种统计编码。主要技术是检测重复的比特或字符序列,并用它们的出现次数取而代之。比较适合于二值图像的编码,但是不适用于连续色调图像的压缩,例如日常生活中的照片。为了达到较好的压缩效果,有时行程编码和其他一些编码方法混合使用。

该压缩编码技术相当直观和经济,运算也相当简单,因此解压缩速度很快。RLE压缩编码尤其适用于计算机生成的图形图像,对减少存储容量很有效果。

【——百度百科】

游程编码的基本原理是将连续的重复数据用一个对来表示,这个对包含两个部分:

  • 计数值:表示数据重复的次数。
  • 数据值:表示被重复的数据。

应用场景

游程编码常用于图像压缩、文本压缩等领域,尤其是在数据中存在大量连续重复的模式时。

优缺点

优点

  • 简单:算法实现简单,易于理解和实现。
  • 高效:对于具有大量连续重复数据的文件,压缩比可以非常高。

缺点

  • 不适用:对于没有连续重复数据的文件,游程编码可能不会减少数据大小,甚至可能增加数据量(因为需要额外存储计数值)。

示例

假设我们有一串二进制数据:00011111111000011111110,应用游程编码后,可以表示为:

3 0(表示三个0)
7 1(表示七个1)
3 0(表示三个0)
7 1(表示七个1)

c++实现游程编码

  • RLE编码
#include <iostream>
#include <string>
#include <vector>// 函数用于对字符串进行RLE编码
std::string rle_encode(const std::string& input) {std::string output;char last_char = 0;int count = 1;for (size_t i = 1; i <= input.size(); ++i) {if (i == input.size() || input[i] != last_char) {// 添加到输出output += std::to_string(count);output += last_char;// 重置计数器和最后一个字符count = 1;last_char = input[i];} else {// 如果当前字符与上一个相同,增加计数器++count;}}return output;
}// 主函数
int main() {std::string data = "AAAABBBCCDAA";std::string encoded_data = rle_encode(data);std::cout << "Encoded data: " << encoded_data << std::endl;return 0;
}
  • RLE解码
#include <iostream>
#include <string>
#include <cctype>// 函数用于对RLE编码的字符串进行解码
std::string rle_decode(const std::string& input) {std::string output;for (size_t i = 0; i < input.length(); ) {// 解析计数int count = 0;while (i < input.length() && std::isdigit(input[i])) {count = count * 10 + (input[i++] - '0');}// 添加字符到输出while (count-- > 0) {output += input[i++];}}return output;
}// 主函数中可以测试解码功能
int main() {std::string encoded_data = "4A3B2C1D2A";std::string decoded_data = rle_decode(encoded_data);std::cout << "Decoded data: " << decoded_data << std::endl;return 0;
}

这两个函数分别实现了RLE的编码和解码过程。编码函数rle_encode读取输入字符串,并为每个连续的字符序列生成一个计数和该字符。解码函数rle_decode则将编码后的字符串转换回原始字符串,它通过读取计数和紧跟的字符来重建原始数据。

H264编码标准中游程编码

  • 图像在进行离散变换后能量集中字啊低频和直流区域,其系数经过量化后低频和直流分量有少量较大值,高频区域除了有少量的较小值外大部分为零。为了更加有效的编码,可以根据系数的统计特性采用熵编码进一步压缩数据,在熵编码前可以根据从高到低的统计特性,对系数进行锯齿扫描和游程长度编码。
  • 在H264编码标准中,游程编码用3个量表示一个非零系数:第一个量是非零系数前0的个数;第二量为非零系数的值;第三个量为终止标志,常用1表示游程编码结束,0表示游程编码未结束。

示例

  • 如下图是以8x8的图像块,经过变换、量化后的系数按照zigzag扫描,排序成串行行数据序列:

12,0,0-6,4,6,0,0,0,0,0,-7,0,0,0,-2,0,0,…

  • 经过游程编码后的结果为:

(0,12,0)(2,-6,0)(0,4,0)(4,-7,0)(3,-2,1)

在这里插入图片描述

参考

  • 深入理解视频编解码技术——基于H.264标准及参考模型

这篇关于H264编码标准中游程编码应用介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933757

相关文章

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/