蛮力法之串匹配问题---kmp算法中真/后缀作用及next数组计算

本文主要是介绍蛮力法之串匹配问题---kmp算法中真/后缀作用及next数组计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在源串S中搜索目标串T时,利用串匹配的暴力求解方法,在求解的过程中,我们分析得到简化该问题求解过程的关键步骤,也即kmp算法的核心思想:如何在某趟S[i]和T[j]匹配失败时,下标i不回溯,下标j回溯到某个位置k,下一趟搜索时,从T[k]和S[i]开始比较。这样可以使得算法复杂度降低到O(n),其中n为源串S的长度。

一、什么是真前缀和真后缀

真前缀就是对T[j]来说,使得T[0]~T[k-1]=T[j-k]~T[j-1],k取最大值时的子串T[0]~T[k-1],同理

真后缀就是对T[j]来说,使得T[0]~T[k-1]=T[j-k]~T[j-1],k取最大值时的子串T[j-k]~T[j-1]

直观来说就是,就是在子串T[0]~T[j-1]中,k从取值范围[0,(j-1)/2]中逐渐增大,使得

从下标0开始向后增加构建子串T1=T[0]

                                                 T1=T[0]T[1]

                                                 T1=T[0]T[1]T[2]

                                                 ......

                                                 T1=T[0]T[1]T[2]···T[k-1]

从下标j-1开始向前减小构建子串T2=T[j-1]

                                                   T2=T[j-2]T[j-1]

                                                   T2=T[j-3]T[j-2]T[j-1]

                                                   ......

                                                   T2=T[j-k]···T[j-3]T[j-2]T[j-1]

在构建子串T1,T2的过程中,依次比较

T1=T[0]是否与T2=T[j-1]相等:若相等,进行下一轮的T1,T2的构建与比较;

T1=T[0]T[1]是否与T2=T[j-2]T[j-1]相等:若相等,再进行下一轮的T1,T2的构建与比较;

依次类推,直到k取得最大值(j-1)/2时结束;

T1,T2的比较过程中,如果出现T1不等于T2的情况,则T1,T2的构建与比较过程结束,k取使得T1=T2时的最大值,此时对应的

真前缀就是T[0]~T[k-1]

真后缀就是T[j-k]~T[j-1]


二、为什么要计算真前缀和真后缀

在如下的搜索比较时出现S[i]不等于T[j]:

S[0]S[1]··········S[i-3]S[i-2]S[i-1]S[i]··········S[n-3]S[n-2]S[n-1]

                T[0]·········T[j-2]T[j-1]T[j]······T[m-1]

显然字符串 T[0]~T[j-2]T[j-1]等于字符串S[i-j]~S[i-2]S[i-1],它们的长度为j

显然它们的子串T[j-k]~T[j-1]等于S[i-k]~S[i-1],它们的长度为k

这时,利用T[j]的真前缀和真后缀T[0]~T[k-1]=T[j-k]~T[j-1]

所以T[0]~T[k-1]等于S[i-k]~S[i-1]

根据KMP算法思想,i不动,j需要回溯到某一个位置,根据上面的分析,j需要回溯到位置k,即下一次比较从S[i]和T[k]开始,也即:

S[0]S[1]··········S[i-3]S[i-2]S[i-1]S[i]··········S[n-3]S[n-2]S[n-1]

                             T[0]····T[k-1]T[k]···T[j-1]T[j]···T[m-1]

这也体现了真前缀和真后缀得作用。


三、next数组计算

若已找到T[j]的真前缀和真后缀,也即T[0]~T[k-1]=T[j-k]~T[j-1],在求T[j+1]真前缀和真后缀时,分两种情况:

(1)T[k]=T[j],则T[j+1]的真前缀和真后缀为T[0]~T[k-1]T[k]=T[j-k]~T[j-1]T[j]

(2)T[k]不等于T[j],那么需要在T[0]~T[j]中寻找真前缀和真后缀,分析得到如下结论:

(i)因为T[0]~T[k-1]=T[j-k]~T[j-1],所以真前缀和真后缀得定义可以推断出字符串T[0]~T[k-1]关于T[k]T[j-k]~T[j-1]关于T[j]真前缀和真后缀是一样的,所以得到结论T[0]~T[k-1]关于T[k]的真前缀等于T[j-k]~T[j-1]关于T[j]的真后缀;

(ii)结论:next[k]的值为T[0]~T[k-1]真前缀和真后缀的字符串长度,正如next[j]的值为字符串T[0]~T[k-1]的长度;

根据以上(i)和(ii)结论,

k=next[k]

若T[k]=T[j],也即T[next[k]]=T[j],则next[j+1]=k+1,解释如下:

根据结论(i)可以得到T[0]~T[next[k]-1]=T[j-next[k]]~T[j-1],又因为T[next[k]]=T[j],可以得到T[0]~T[next[k]-1]T[next[k]]=T[j-next[k]]~T[j-1]T[j]该式满足T[0]~T[j+1]关于真前缀和真后缀的定义,所以next[j+1]=k+1;

T[k]不等于T[j]则继续寻找T[0]~T[next[k]]的真前缀,此时继续令k=next[k],

直到T[k]=T[j](此时next[j+1]=k+1),

或者直到k=-1(此时next[j+1]=0)。

根据如上讨论可以计算得到next数组。



这篇关于蛮力法之串匹配问题---kmp算法中真/后缀作用及next数组计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933694

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

css中的 vertical-align与line-height作用详解

《css中的vertical-align与line-height作用详解》:本文主要介绍了CSS中的`vertical-align`和`line-height`属性,包括它们的作用、适用元素、属性值、常见使用场景、常见问题及解决方案,详细内容请阅读本文,希望能对你有所帮助... 目录vertical-ali

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解