数据结构 - 链表详解二 - 无头单向非循环链表

2024-04-24 23:52

本文主要是介绍数据结构 - 链表详解二 - 无头单向非循环链表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 单链表的介绍

上篇文章已经介绍了各种链表的概念了,这篇文章就带大家来实现一下无头单向非循环链表

无头单向非循环链表是一种简单而基本的链表结构,它没有哨兵或额外的头节点来简化操作,且不形成闭环。这种链表直接从首个数据节点开始,每个节点指向下一个节点,最后一个节点指向null以标示链表的结束。

1. 单链表 - 定义节点

typedef int SLTDataType; // 定义数据类型为整型,用SLTDataType代替int
//以提高代码的可读性和可维护性// 定义单向链表的节点结构
typedef struct SListNode {SLTDataType data; // 数据域:存储节点的数据,这里为整型数据struct SListNode* next; // 指针域:指向链表中下一个节点的指针
} SListNode;

2. 单链表 - 创建一个新的节点

//创建新的节点
SListNode* CreateNode(SLTDataType value)
{SListNode* newNode = (SListNode*)malloc(sizeof(SListNode)); // 动态分配内存if (newNode == NULL) // 检查内存是否成功分配{perror("malloc fail");exit(-1);}newNode->data = value; // 设置节点的数据域newNode->next = NULL;  // 初始化指针域,目前此节点不指向其他节点return newNode;        // 返回新创建的节点
}

3. 单链表 - 创建连续的节点 

这里有个问题:为什么SListNode** head使用的是双指针,

// 创建包含 num 个节点的单链表
SListNode* CreateSlist(int num) 
{SListNode* phead = NULL; // 头指针,初始为空SListNode* ptail = NULL; // 尾指针,用于追踪链表末尾for (int i = 0; i < num; i++) {SListNode* newnode = CreateNode(i); // 创建一个新节点if (phead == NULL) {ptail = phead = newnode; // 如果链表为空,初始化头尾指针为第一个节点}else {ptail->next = newnode; // 将新节点链接到链表末尾ptail = newnode;       // 更新尾指针指向新的末尾节点}}return phead; // 返回链表头指针
}

4. 单链表 - 打印

//打印
void PrintList(SListNode* head) 
{if (head == NULL) { // 如果头指针为 NULL,表示链表为空printf("The list is empty.\n");} else {printf("List: ");SListNode* current = head; // 使用一个临时指针从头节点开始遍历链表//保留 head 指针不变,使用另一个临时指针(current)进行遍历,//可以保证 head 指针始终指向链表的开始位置while (current != NULL) { // 遍历链表直到末尾printf("%d -> ", current->data); // 打印当前节点的数据current = current->next; // 移动到下一个节点}printf("NULL\n"); // 打印链表结束标志}
}

5. 单链表 - 销毁

void DestroyList(SListNode** pphead) 
{while (*pphead != NULL) {SListNode* temp = *pphead;       // 保存当前头节点*pphead = (*pphead)->next;       // 更新头指针到下一个节点free(temp);                      // 释放原头节点的内存}// 可选:确保链表完全清空后,外部指针也设置为NULL*pphead = NULL;
}

6. 单链表的头插

void SListPushFront(SListNode** pphead, SLTDataType value)
{SListNode* newNode = CreateNode(value); // 创建一个新节点newNode->next = *pphead; // 新节点的 next 指针指向当前的头节点*pphead = newNode;       // 更新头指针,现在它指向新的头节点
}

7. 单链表的头删

// 头删         注意:插入都不需要断言,删除需要断言,防止要删除得第一个为空
void SListPopFront(SListNode** pphead)
{assert(*pphead); //断言SListNode* temp = *pphead;*pphead = (*pphead)->next;free(temp);temp = NULL;
}

8. 单链表的尾插

//由于 pphead 是一个指向头指针的指针,这样设计允许函数内部直接修改头指针的值。这在链表为空时特别有用,因为需要将头指针指向新创建的第一个节点。如果只传递头指针的副本(即不通过双指针),函数内部的任何修改都不会反映到原始头指针上,从而无法更新链表的开始位置
void SListPushBack(SListNode** pphead, SLTDataType value)
{// 申请一个新结点,并初始化其数据为valueSListNode* newnode = CreateNode(value); // 该函数需要预先定义,用于创建新节点并设置其数据// 判断传入的链表指针是否指向NULL,即检查链表是否为空if (*pphead == NULL) // 如果链表为空(即没有任何节点){*pphead = newnode; // 将链表的头指针指向新节点,使新节点成为链表的第一个(也是唯一一个)节点}else // 如果链表不为空{SListNode* tail = *pphead; // 使用一个辅助指针tail开始于链表的头节点// 遍历链表找到最后一个节点,即其next指针为NULL的节点while (tail->next != NULL) // 继续遍历,直到找到一个next指针为NULL的节点{tail = tail->next; // 移动tail指针到下一个节点}// 在链表的末尾添加新节点tail->next = newnode; // 将找到的最后一个节点的next指针指向新创建的节点,从而将新节点链接到链表的末尾}
}
  • 使用单指针:如果函数签名是 void SListPushBack(SListNode* pphead, SLTDataType value), 那么在添加节点到空链表时,即使我们设置 head = newNode;,这个变化也仅限于函数内部。函数结束后,外部的头指针仍然是 NULL

  • 使用双指针:使用 void AppendNode(SListNode** pphead, SLTDataType value),则允许我们通过 *head = newNode; 真正改变外部的头指针。

由于 pphead 是一个指向头指针的指针,这样设计允许函数内部直接修改头指针的值。这在链表为空时特别有用,因为需要将头指针指向新创建的第一个节点。如果只传递头指针的副本(即不通过双指针),函数内部的任何修改都不会反映到原始头指针上,从而无法更新链表的开始位置。 

9. 单链表的尾删

void SListPopBack(SListNode** pphead) {if (*pphead == NULL) { // 检查链表是否为空return; // 链表为空,直接返回}if ((*pphead)->next == NULL) { // 如果链表只有一个节点free(*pphead); // 释放这个节点*pphead = NULL; // 将头指针设置为 NULLreturn;}SListNode* current = *pphead; // 用于遍历链表的临时指针while (current->next->next != NULL) { // 找到倒数第二个节点current = current->next;}free(current->next); // 释放最后一个节点current->next = NULL; // 将倒数第二个节点的 next 指针设置为 NULL
}

10. 单链表在pos位置前插入数据

void InsertNodeBeforePos(SListNode** pphead, int pos, SLTDataType value) 
{if (pos < 0 || pphead == NULL) { // 检查位置是否有效return;}SListNode* newNode = CreateNode(value); // 创建新节点if (pos == 0) { // 如果位置是0,即在头部插入newNode->next = *pphead; // 新节点指向当前头节点*pphead = newNode; // 更新头节点为新节点return;}SListNode* current = *pphead;for (int i = 0; current != NULL && i < pos - 1; i++) { // 寻找位置 pos 的前一个节点current = current->next;}if (current == NULL) { // 如果位置超出链表长度free(newNode); // 释放新节点return;}// 插入新节点到链表中newNode->next = current->next; // 新节点指向当前节点的下一个节点current->next = newNode; // 当前节点的 next 更新为新节点
}

11. 单链表的在pos位置后插入数据

void InsertNodeAfterPos(SListNode** pphead, int pos, SLTDataType value) {if (pos < 0 || pphead == NULL) { // 检查位置是否有效return;}SListNode* current = *pphead;for (int i = 0; current != NULL && i < pos; i++) { // 寻找位置 pos 的节点current = current->next;}if (current == NULL) { // 如果位置超出链表长度或链表为空return;}SListNode* newNode = CreateNode(value); // 创建新节点newNode->next = current->next; // 新节点指向当前节点的下一个节点current->next = newNode; // 当前节点的 next 更新为新节点
}

12. 链表删除pos位置之后的元素

// 删除指定位置之后的所有节点
void DeleteNodesAfterPos(SListNode** pphead, int pos) {if (*pphead == NULL || pos < 0) { // 如果链表为空或位置无效return;}SListNode* current = *pphead; // 用于遍历链表的临时指针for (int i = 0; i < pos && current != NULL; i++) { // 遍历到指定位置current = current->next;}if (current == NULL || current->next == NULL) { // 如果位置超出链表范围或没有后续节点return;}SListNode* temp = current->next; // 保存要开始删除的第一个节点current->next = NULL; // 将指定位置的节点的 next 指针设置为 NULL,断开链接while (temp != NULL) { // 遍历并释放所有后继节点SListNode* toDelete = temp;temp = temp->next;free(toDelete);}
}

13. 链表删除pos位置的元素

void DeleteNodeAtPos(SListNode** pphead, int pos) {if (pos < 0 || *pphead == NULL) { // 检查位置是否有效或链表是否为空return;}SListNode* temp = *pphead; // 用于遍历的临时指针if (pos == 0) { // 如果要删除的是头节点*pphead = temp->next; // 更新头指针free(temp); // 释放头节点内存return;}for (int i = 0; i < pos - 1 && temp != NULL; i++) { // 寻找要删除节点的前一个节点temp = temp->next;}if (temp == NULL || temp->next == NULL) { // 如果位置无效或者pos超出了链表长度return; // 无操作}SListNode* toDelete = temp->next; // 指向要删除的节点temp->next = toDelete->next; // 将前一个节点的 next 指向要删除节点的下一个节点free(toDelete); // 释放要删除的节点的内存
}

14. 链表修改pos位置的数据

void SListModify(SListNode* pos, SLTDataType x)
{pos->data = x;//将结点的数据改为目标数据
}

二. 完整代码

SListNode.c

#include <stdio.h>
#include <string.h>
#include <cstdlib>typedef int SLTDataType; // 定义数据类型为整型,用SLTDataType代替int
//以提高代码的可读性和可维护性// 定义单向链表的节点结构
typedef struct SListNode {SLTDataType data; // 数据域:存储节点的数据,这里为整型数据struct SListNode* next; // 指针域:指向链表中下一个节点的指针
} SListNode;//创建新的节点
SListNode* CreateNode(SLTDataType value)
{SListNode* newNode = (SListNode*)malloc(sizeof(SListNode)); // 动态分配内存if (newNode == NULL) // 检查内存是否成功分配{perror("malloc fail");exit(-1);}newNode->data = value; // 设置节点的数据域newNode->next = NULL;  // 初始化指针域,目前此节点不指向其他节点return newNode;        // 返回新创建的节点
}// 创建包含 num 个节点的单链表
SListNode* CreateSlist(int num)
{SListNode* phead = NULL; // 头指针,初始为空SListNode* ptail = NULL; // 尾指针,用于追踪链表末尾for (int i = 0; i < num; i++) {SListNode* newnode = CreateNode(i); // 创建一个新节点if (phead == NULL) {ptail = phead = newnode; // 如果链表为空,初始化头尾指针为第一个节点}else {ptail->next = newnode; // 将新节点链接到链表末尾ptail = newnode;       // 更新尾指针指向新的末尾节点}}return phead; // 返回链表头指针
}//打印
void PrintList(SListNode* head)
{if (head == NULL) { // 如果头指针为 NULL,表示链表为空printf("The list is empty.\n");}else {printf("List: ");SListNode* current = head; // 使用一个临时指针从头节点开始遍历链表//保留 head 指针不变,使用另一个临时指针(current)进行遍历,//可以保证 head 指针始终指向链表的开始位置while (current != NULL) { // 遍历链表直到末尾printf("%d -> ", current->data); // 打印当前节点的数据current = current->next; // 移动到下一个节点}printf("NULL\n"); // 打印链表结束标志}
}//摧毁
void DestroyList(SListNode** pphead)
{while (*pphead != NULL) {SListNode* temp = *pphead;       // 保存当前头节点*pphead = (*pphead)->next;       // 更新头指针到下一个节点free(temp);                      // 释放原头节点的内存}// 可选:确保链表完全清空后,外部指针也设置为NULL*pphead = NULL;
}//头插
void SListPushFront(SListNode** pphead, SLTDataType value)
{SListNode* newNode = CreateNode(value); // 创建一个新节点newNode->next = *pphead; // 新节点的 next 指针指向当前的头节点*pphead = newNode;       // 更新头指针,现在它指向新的头节点
}// 头删         注意:插入都不需要断言,删除需要断言,防止要删除得第一个为空
void SListPopFront(SListNode** pphead)
{assert(*pphead); //断言SListNode* temp = *pphead;*pphead = (*pphead)->next;free(temp);temp = NULL;
}//尾插
//由于 pphead 是一个指向头指针的指针,这样设计允许函数内部直接修改头指针的值。这在链表为空时特别有用,因为需要将头指针指向新创建的第一个节点。如果只传递头指针的副本(即不通过双指针),函数内部的任何修改都不会反映到原始头指针上,从而无法更新链表的开始位置
void SListPushBack(SListNode** pphead, SLTDataType value)
{// 申请一个新结点,并初始化其数据为valueSListNode* newnode = CreateNode(value); // 该函数需要预先定义,用于创建新节点并设置其数据// 判断传入的链表指针是否指向NULL,即检查链表是否为空if (*pphead == NULL) // 如果链表为空(即没有任何节点){*pphead = newnode; // 将链表的头指针指向新节点,使新节点成为链表的第一个(也是唯一一个)节点}else // 如果链表不为空{SListNode* tail = *pphead; // 使用一个辅助指针tail开始于链表的头节点// 遍历链表找到最后一个节点,即其next指针为NULL的节点while (tail->next != NULL) // 继续遍历,直到找到一个next指针为NULL的节点{tail = tail->next; // 移动tail指针到下一个节点}// 在链表的末尾添加新节点tail->next = newnode; // 将找到的最后一个节点的next指针指向新创建的节点,从而将新节点链接到链表的末尾}
}
//尾删
void SListPopBack(SListNode** pphead) {if (*pphead == NULL) { // 检查链表是否为空return; // 链表为空,直接返回}if ((*pphead)->next == NULL) { // 如果链表只有一个节点free(*pphead); // 释放这个节点*pphead = NULL; // 将头指针设置为 NULLreturn;}SListNode* current = *pphead; // 用于遍历链表的临时指针while (current->next->next != NULL) { // 找到倒数第二个节点current = current->next;}free(current->next); // 释放最后一个节点current->next = NULL; // 将倒数第二个节点的 next 指针设置为 NULL
}//单链表在pos位置前插入数据
void InsertNodeBeforePos(SListNode** pphead, int pos, SLTDataType value)
{if (pos < 0 || pphead == NULL) { // 检查位置是否有效return;}SListNode* newNode = CreateNode(value); // 创建新节点if (pos == 0) { // 如果位置是0,即在头部插入newNode->next = *pphead; // 新节点指向当前头节点*pphead = newNode; // 更新头节点为新节点return;}SListNode* current = *pphead;for (int i = 0; current != NULL && i < pos - 1; i++) { // 寻找位置 pos 的前一个节点current = current->next;}if (current == NULL) { // 如果位置超出链表长度free(newNode); // 释放新节点return;}// 插入新节点到链表中newNode->next = current->next; // 新节点指向当前节点的下一个节点current->next = newNode; // 当前节点的 next 更新为新节点
}//单链表在pos位置前插入数据
void InsertNodeAfterPos(SListNode** pphead, int pos, SLTDataType value) {if (pos < 0 || pphead == NULL) { // 检查位置是否有效return;}SListNode* current = *pphead;for (int i = 0; current != NULL && i < pos; i++) { // 寻找位置 pos 的节点current = current->next;}if (current == NULL) { // 如果位置超出链表长度或链表为空return;}SListNode* newNode = CreateNode(value); // 创建新节点newNode->next = current->next; // 新节点指向当前节点的下一个节点current->next = newNode; // 当前节点的 next 更新为新节点
}// 删除指定位置之后的所有节点
void DeleteNodesAfterPos(SListNode** pphead, int pos) {if (*pphead == NULL || pos < 0) { // 如果链表为空或位置无效return;}SListNode* current = *pphead; // 用于遍历链表的临时指针for (int i = 0; i < pos && current != NULL; i++) { // 遍历到指定位置current = current->next;}if (current == NULL || current->next == NULL) { // 如果位置超出链表范围或没有后续节点return;}SListNode* temp = current->next; // 保存要开始删除的第一个节点current->next = NULL; // 将指定位置的节点的 next 指针设置为 NULL,断开链接while (temp != NULL) { // 遍历并释放所有后继节点SListNode* toDelete = temp;temp = temp->next;free(toDelete);}
}//链表删除pos位置的元素
void DeleteNodeAtPos(SListNode** pphead, int pos) {if (pos < 0 || *pphead == NULL) { // 检查位置是否有效或链表是否为空return;}SListNode* temp = *pphead; // 用于遍历的临时指针if (pos == 0) { // 如果要删除的是头节点*pphead = temp->next; // 更新头指针free(temp); // 释放头节点内存return;}for (int i = 0; i < pos - 1 && temp != NULL; i++) { // 寻找要删除节点的前一个节点temp = temp->next;}if (temp == NULL || temp->next == NULL) { // 如果位置无效或者pos超出了链表长度return; // 无操作}SListNode* toDelete = temp->next; // 指向要删除的节点temp->next = toDelete->next; // 将前一个节点的 next 指向要删除节点的下一个节点free(toDelete); // 释放要删除的节点的内存
}//修改
void SListModify(SListNode* pos, SLTDataType x)
{pos->data = x;//将结点的数据改为目标数据
}

这篇关于数据结构 - 链表详解二 - 无头单向非循环链表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933184

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected