【上海大学计算机组成原理实验报告】四、指令系统实验

本文主要是介绍【上海大学计算机组成原理实验报告】四、指令系统实验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、实验目的

  1. 了解指令结构、PC寄存器的功能和指令系统的基本工作原理。

  2. 学习设计指令的方法。

二、实验原理

  1. 根据实验指导书的相关内容,对于部分使用频率很高,且只用几条微指令即可完成的简单操作,可以把这部分简单操作的微指令序列固定下来,存放在一个快速存储器中。之后我们就可以用不同的指令来调用不同的微程序,以达到完成不同指令的功能。

  2. 本实验所用的实验箱的指令系统中,每条指令均由4条微指令组成。当实际需要的微指令数量不足4条时,可用无效微指令FFFFFFH补足,但最后一条有效微指令一定是CBFFFFH微指令,表示本条指令执行完毕,取下一条指令。

  3. 指令系统的工作原理: 

    1. 指令获取:从存储器中获取下一条指令,通过地址总线传递给存储器。

    2. 指令解码:将获取的指令二进制通过指令总线传递给微程序计数器,高6位作为微程序入口地址,低2位分别作为SASB

    3. 微程序执行:根据微程序入口地址访问微程序存储器,将控制信号输出到控制总线,执行当前微指令功能。uPC1,输出下一条微指令,重复执行,直到“取下一条指令”微指令。

    4. 取下一条指令:PC1,开始执行下一条指令。

三、实验内容

实验任务一:分析并验证指令功能

观察机器指令码为66H的各微指令信号,验证该指令的功能。假设A=03HR2=77H77地址单元存放06H数据。

实验任务二:设计指令,完成相应功能

修改机器指令码为E8H的功能,使其完成“输出A+W的结果右移一位的值送OUT输出”操作。

**注意:**两个任务连起来做。

(1) 实验步骤

  1. 注释仪器,打开电源,手不要远离电源开关,随时准备关闭电源,注意各数码管、发光管的稳定性,静待10秒,确信仪器稳定、无焦糊味。

  2. 按Reset键初始化系统,并设置实验箱进入EM模式。设置Adr=00,按下NX,设置DB=66;而后按下NX,设置DB=E8;最后设置Adr=77,按下NX,设置DB=06

  3. 设置实验箱进入uEM模式。设置Adr=E8,按下NX,设置E8=FF DE B8H;而后按下NX,设置E9=CB FF FFH;最后按相同的方式将EAEB设置为FF FF FFH

  4. 设置实验箱进入uPC模式。设置uPC=00PC=00A=03;按NX三次,设置R2=77,按下STEP键,观察实验结果。

  5. 记录实验结果,关闭实验箱电源。

(2) 实验现象

  1. 第一次按下STEP键时,发现uPC显示64PC显示01

  2. 第二次按下STEP键时,发现uPc显示65MAR显示77

  3. 第三次按下STEP键时,发现uPC显示66W显示06

  4. 第四次按下STEP键时,发现uPC显示67A显示07

  5. 第五次按下STEP键时,发现uPC显示E8

  6. 第六次按下STEP键时,发现uPC显示E9OUT显示06

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(3)实验结论

  1. 由第二次按下STEP键发现MAR显示77,可知指令码为66H的含义是将R2寄存器中的内容读出并写入MAR寄存器。

  2. 通过一系列正确的设计,我们成功地完成了“输出A+W的结果右移一位的值送OUT输出”操作功能的实现。

四、建议

  1. 在分析66H处的指令时,可以将其与例子中的指令进行比较观察在二进制格式下有哪些位不同。

  2. 在编制指令时,要确定好“A+W”运算、“右移一位”和“送OUT”输出分别对应微指令在二进制格式下的哪些位置。

五、体会

通过此次实验,加深了我对计算机体系结构中PC寄存器和指令系统的理解,同时也让我学会了如何设计指令,还让我能将理论知识应用到实际情景中,为进行下一次实验打下了扎实基础。

六、思考题

在微指令结构的计算机中,一条指令从启动到产生功能经过哪些环节?

  1. 指令获取。

  2. 指令解码。

  3. 微指令执行。

  4. uPC更新。

  5. 取下一条指令。

这篇关于【上海大学计算机组成原理实验报告】四、指令系统实验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933041

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr