Spark pivot数据透视从句

2024-04-24 22:12
文章标签 数据 透视 spark 从句 pivot

本文主要是介绍Spark pivot数据透视从句,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 1. 概念
  • 2. 实战
    • 2.1. 新列的决定因素
    • 2.2. 新列别名
    • 2.3. column_list中指定多个字段
    • 2.4. 多个聚合函数的使用
    • 2.5. 最终出现在SQL结果中的决定因素

Spark pivot数据透视从句

1. 概念

  • 描述
    用于数据透视,根据特定的列获取聚合值,聚合值将转换为select子句中使用的多列。可以在表名或子查询后指定pivot子句
  • 使用场景
    常见的使用场景之一,对数据进行行转列操作
  • 语法格式
select *
From Table
PIVOT ( { aggregate_expression [ AS aggregate_expression_alias ] } [ , ... ]FOR column_list IN ( expression_list ) )

column_list:可供选择的列为From子句中的列,将使用指定列下的值用于生成新的列。
expression_list:column_list中指定列的值。可以指定别名,指定别名后,则使用别名作为新列名,否则将直接使用列值作为新字段名。

接下来通过几个例子来理解pivot的具体用法。

2. 实战

构键测试数据

CREATE TABLE pivot1 (name STRING, subject string, score INT);
INSERT overwrite table pivot1
select inline(array(
struct('张三','语文',95),
struct('张三','英语',85),
struct('张三','数学',100),
struct('李四','语文',90),
struct('李四','英语',80),
struct('李四','数学',100),
struct('王五','语文',99),
struct('王五','数学',98)
));

2.1. 新列的决定因素

select *
from pivot1 
pivot(max(score) as score1 for subject in('语文','英语','数学'));
-- 执行结果
name    语文    英语    数学
王五    99      NULL    98
李四    90      80      100
张三    95      85      100select *
from pivot1 
pivot(max(score) as score1 for subject in('语文','英语'));
-- 执行结果
name    语文    英语
王五    99      NULL
李四    90      80
张三    95      85select *
from pivot1 
pivot(max(score) as score1 for subject in('英语'));
-- 执行结果
name    英语
王五    NULL
李四    80
张三    85

结果中新列取决于column_list和expression_list的共同影响,在上述示例中表示将pivot1表中subject列下的值作为新的结果列,但是具体将哪些值作为新列,取决于in后面的字段值列表。

2.2. 新列别名

select name,c,e,m
from pivot1 
pivot(max(score) as score1 for subject in('语文' as c,'英语' as e,'数学' as m));
-- 执行结果
name    c       e       m
王五    99      NULL    98
李四    90      80      100
张三    95      85      100

在in中指定的别名将作为新列的名称。

2.3. column_list中指定多个字段

select *
from pivot1 
pivot(max(score) as score1 for (subject,name) in(('语文','张三'),('语文','李四'),('语文','王五')));
-- 执行结果
[语文, 张三]    [语文, 李四]    [语文, 王五]
95             90             99

当column_list中指定多个字段时,须使用括号,并且expression_list中指定的字段值也需要使用括号,二者括号中内容顺序需要保持一致。
for (subject,name) in(('语文','张三'),('语文','李四'),('语文','王五'))最终决定测试表中只有以下数据参与计算。

'张三','语文',95
'李四','语文',90
'王五','语文',99

2.4. 多个聚合函数的使用

select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg for subject in('语文','英语','数学'));
-- 执行结果
name    语文_score1     语文_avg        英语_score1     英语_avg        数学_score1     数学_avg
王五     99             99.0           NULL            NULL           98             98.0
李四     90             90.0           80              80.0           100            100.0
张三     95             95.0           85              85.0           100            100.0select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg for subject in('语文','英语'));
-- 执行结果
name    语文_score1     语文_avg        英语_score1     英语_avg
王五     99             99.0           NULL            NULL
李四     90             90.0           80              80.0
张三     95             95.0           85              85.0

上述SQL1中,原始表中3个字段列,只有name列在pivot中未涉及,但是最终结果将会包含name列下的全部值。
理解聚合函数的聚合粒度是什么?
在in中指定的值将会作为聚合条件之一,同时由于name未参与pivot函数使得结果包含全部name列值,因此结合起来的聚合条件就是name+subject

这里得出部分结论

  • column_list中已指定的列将不会出现在最终结果中
  • 聚合函数中使用的列也不会出现在最终结果中
  • 只有在column_list和聚合函数中都没有使用的列,才会原模原样出现在最终结果中,并且会将这些列作为聚合条件的一部分

2.5. 最终出现在SQL结果中的决定因素

select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg,count(subject) as cnt for name in('张三','李四','王五'));
-- 执行结果
张三_score1     张三_avg        张三_cnt        李四_score1     李四_avg        李四_cnt        王五_score1     王五_avg        王五_cnt
100     93.33333333333333       3       100     90.0    3       99      98.5    2select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg,count(score) as cnt for name in('张三','李四','王五'));
-- 执行结果
subject 张三_score1     张三_avg        张三_cnt        李四_score1     李四_avg        李四_cnt        王五_score1     王五_avg        王五_cnt
英语    85      85.0    1       80      80.0    1       NULL    NULL    NULL
语文    95      95.0    1       90      90.0    1       99      99.0    1
数学    100     100.0   1       100     100.0   1       98      98.0    1

上述示例1中pivot1表中所有的字段中都参与了pivot函数,或在聚合函数中或在for后,因此SQL执行结果中将不会包含测试表中的原始列,聚合条件即为name。
示例2中pivot1表中subject字段没有参与pivot函数,因此SQL执行结果中会包含subject列的全部值,然后该值会加入到聚合条件中,聚合条件为subject+name。

这篇关于Spark pivot数据透视从句的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932973

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram