Spark pivot数据透视从句

2024-04-24 22:12
文章标签 数据 透视 spark 从句 pivot

本文主要是介绍Spark pivot数据透视从句,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 1. 概念
  • 2. 实战
    • 2.1. 新列的决定因素
    • 2.2. 新列别名
    • 2.3. column_list中指定多个字段
    • 2.4. 多个聚合函数的使用
    • 2.5. 最终出现在SQL结果中的决定因素

Spark pivot数据透视从句

1. 概念

  • 描述
    用于数据透视,根据特定的列获取聚合值,聚合值将转换为select子句中使用的多列。可以在表名或子查询后指定pivot子句
  • 使用场景
    常见的使用场景之一,对数据进行行转列操作
  • 语法格式
select *
From Table
PIVOT ( { aggregate_expression [ AS aggregate_expression_alias ] } [ , ... ]FOR column_list IN ( expression_list ) )

column_list:可供选择的列为From子句中的列,将使用指定列下的值用于生成新的列。
expression_list:column_list中指定列的值。可以指定别名,指定别名后,则使用别名作为新列名,否则将直接使用列值作为新字段名。

接下来通过几个例子来理解pivot的具体用法。

2. 实战

构键测试数据

CREATE TABLE pivot1 (name STRING, subject string, score INT);
INSERT overwrite table pivot1
select inline(array(
struct('张三','语文',95),
struct('张三','英语',85),
struct('张三','数学',100),
struct('李四','语文',90),
struct('李四','英语',80),
struct('李四','数学',100),
struct('王五','语文',99),
struct('王五','数学',98)
));

2.1. 新列的决定因素

select *
from pivot1 
pivot(max(score) as score1 for subject in('语文','英语','数学'));
-- 执行结果
name    语文    英语    数学
王五    99      NULL    98
李四    90      80      100
张三    95      85      100select *
from pivot1 
pivot(max(score) as score1 for subject in('语文','英语'));
-- 执行结果
name    语文    英语
王五    99      NULL
李四    90      80
张三    95      85select *
from pivot1 
pivot(max(score) as score1 for subject in('英语'));
-- 执行结果
name    英语
王五    NULL
李四    80
张三    85

结果中新列取决于column_list和expression_list的共同影响,在上述示例中表示将pivot1表中subject列下的值作为新的结果列,但是具体将哪些值作为新列,取决于in后面的字段值列表。

2.2. 新列别名

select name,c,e,m
from pivot1 
pivot(max(score) as score1 for subject in('语文' as c,'英语' as e,'数学' as m));
-- 执行结果
name    c       e       m
王五    99      NULL    98
李四    90      80      100
张三    95      85      100

在in中指定的别名将作为新列的名称。

2.3. column_list中指定多个字段

select *
from pivot1 
pivot(max(score) as score1 for (subject,name) in(('语文','张三'),('语文','李四'),('语文','王五')));
-- 执行结果
[语文, 张三]    [语文, 李四]    [语文, 王五]
95             90             99

当column_list中指定多个字段时,须使用括号,并且expression_list中指定的字段值也需要使用括号,二者括号中内容顺序需要保持一致。
for (subject,name) in(('语文','张三'),('语文','李四'),('语文','王五'))最终决定测试表中只有以下数据参与计算。

'张三','语文',95
'李四','语文',90
'王五','语文',99

2.4. 多个聚合函数的使用

select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg for subject in('语文','英语','数学'));
-- 执行结果
name    语文_score1     语文_avg        英语_score1     英语_avg        数学_score1     数学_avg
王五     99             99.0           NULL            NULL           98             98.0
李四     90             90.0           80              80.0           100            100.0
张三     95             95.0           85              85.0           100            100.0select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg for subject in('语文','英语'));
-- 执行结果
name    语文_score1     语文_avg        英语_score1     英语_avg
王五     99             99.0           NULL            NULL
李四     90             90.0           80              80.0
张三     95             95.0           85              85.0

上述SQL1中,原始表中3个字段列,只有name列在pivot中未涉及,但是最终结果将会包含name列下的全部值。
理解聚合函数的聚合粒度是什么?
在in中指定的值将会作为聚合条件之一,同时由于name未参与pivot函数使得结果包含全部name列值,因此结合起来的聚合条件就是name+subject

这里得出部分结论

  • column_list中已指定的列将不会出现在最终结果中
  • 聚合函数中使用的列也不会出现在最终结果中
  • 只有在column_list和聚合函数中都没有使用的列,才会原模原样出现在最终结果中,并且会将这些列作为聚合条件的一部分

2.5. 最终出现在SQL结果中的决定因素

select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg,count(subject) as cnt for name in('张三','李四','王五'));
-- 执行结果
张三_score1     张三_avg        张三_cnt        李四_score1     李四_avg        李四_cnt        王五_score1     王五_avg        王五_cnt
100     93.33333333333333       3       100     90.0    3       99      98.5    2select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg,count(score) as cnt for name in('张三','李四','王五'));
-- 执行结果
subject 张三_score1     张三_avg        张三_cnt        李四_score1     李四_avg        李四_cnt        王五_score1     王五_avg        王五_cnt
英语    85      85.0    1       80      80.0    1       NULL    NULL    NULL
语文    95      95.0    1       90      90.0    1       99      99.0    1
数学    100     100.0   1       100     100.0   1       98      98.0    1

上述示例1中pivot1表中所有的字段中都参与了pivot函数,或在聚合函数中或在for后,因此SQL执行结果中将不会包含测试表中的原始列,聚合条件即为name。
示例2中pivot1表中subject字段没有参与pivot函数,因此SQL执行结果中会包含subject列的全部值,然后该值会加入到聚合条件中,聚合条件为subject+name。

这篇关于Spark pivot数据透视从句的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932973

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本