Spark pivot数据透视从句

2024-04-24 22:12
文章标签 数据 透视 spark 从句 pivot

本文主要是介绍Spark pivot数据透视从句,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 1. 概念
  • 2. 实战
    • 2.1. 新列的决定因素
    • 2.2. 新列别名
    • 2.3. column_list中指定多个字段
    • 2.4. 多个聚合函数的使用
    • 2.5. 最终出现在SQL结果中的决定因素

Spark pivot数据透视从句

1. 概念

  • 描述
    用于数据透视,根据特定的列获取聚合值,聚合值将转换为select子句中使用的多列。可以在表名或子查询后指定pivot子句
  • 使用场景
    常见的使用场景之一,对数据进行行转列操作
  • 语法格式
select *
From Table
PIVOT ( { aggregate_expression [ AS aggregate_expression_alias ] } [ , ... ]FOR column_list IN ( expression_list ) )

column_list:可供选择的列为From子句中的列,将使用指定列下的值用于生成新的列。
expression_list:column_list中指定列的值。可以指定别名,指定别名后,则使用别名作为新列名,否则将直接使用列值作为新字段名。

接下来通过几个例子来理解pivot的具体用法。

2. 实战

构键测试数据

CREATE TABLE pivot1 (name STRING, subject string, score INT);
INSERT overwrite table pivot1
select inline(array(
struct('张三','语文',95),
struct('张三','英语',85),
struct('张三','数学',100),
struct('李四','语文',90),
struct('李四','英语',80),
struct('李四','数学',100),
struct('王五','语文',99),
struct('王五','数学',98)
));

2.1. 新列的决定因素

select *
from pivot1 
pivot(max(score) as score1 for subject in('语文','英语','数学'));
-- 执行结果
name    语文    英语    数学
王五    99      NULL    98
李四    90      80      100
张三    95      85      100select *
from pivot1 
pivot(max(score) as score1 for subject in('语文','英语'));
-- 执行结果
name    语文    英语
王五    99      NULL
李四    90      80
张三    95      85select *
from pivot1 
pivot(max(score) as score1 for subject in('英语'));
-- 执行结果
name    英语
王五    NULL
李四    80
张三    85

结果中新列取决于column_list和expression_list的共同影响,在上述示例中表示将pivot1表中subject列下的值作为新的结果列,但是具体将哪些值作为新列,取决于in后面的字段值列表。

2.2. 新列别名

select name,c,e,m
from pivot1 
pivot(max(score) as score1 for subject in('语文' as c,'英语' as e,'数学' as m));
-- 执行结果
name    c       e       m
王五    99      NULL    98
李四    90      80      100
张三    95      85      100

在in中指定的别名将作为新列的名称。

2.3. column_list中指定多个字段

select *
from pivot1 
pivot(max(score) as score1 for (subject,name) in(('语文','张三'),('语文','李四'),('语文','王五')));
-- 执行结果
[语文, 张三]    [语文, 李四]    [语文, 王五]
95             90             99

当column_list中指定多个字段时,须使用括号,并且expression_list中指定的字段值也需要使用括号,二者括号中内容顺序需要保持一致。
for (subject,name) in(('语文','张三'),('语文','李四'),('语文','王五'))最终决定测试表中只有以下数据参与计算。

'张三','语文',95
'李四','语文',90
'王五','语文',99

2.4. 多个聚合函数的使用

select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg for subject in('语文','英语','数学'));
-- 执行结果
name    语文_score1     语文_avg        英语_score1     英语_avg        数学_score1     数学_avg
王五     99             99.0           NULL            NULL           98             98.0
李四     90             90.0           80              80.0           100            100.0
张三     95             95.0           85              85.0           100            100.0select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg for subject in('语文','英语'));
-- 执行结果
name    语文_score1     语文_avg        英语_score1     英语_avg
王五     99             99.0           NULL            NULL
李四     90             90.0           80              80.0
张三     95             95.0           85              85.0

上述SQL1中,原始表中3个字段列,只有name列在pivot中未涉及,但是最终结果将会包含name列下的全部值。
理解聚合函数的聚合粒度是什么?
在in中指定的值将会作为聚合条件之一,同时由于name未参与pivot函数使得结果包含全部name列值,因此结合起来的聚合条件就是name+subject

这里得出部分结论

  • column_list中已指定的列将不会出现在最终结果中
  • 聚合函数中使用的列也不会出现在最终结果中
  • 只有在column_list和聚合函数中都没有使用的列,才会原模原样出现在最终结果中,并且会将这些列作为聚合条件的一部分

2.5. 最终出现在SQL结果中的决定因素

select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg,count(subject) as cnt for name in('张三','李四','王五'));
-- 执行结果
张三_score1     张三_avg        张三_cnt        李四_score1     李四_avg        李四_cnt        王五_score1     王五_avg        王五_cnt
100     93.33333333333333       3       100     90.0    3       99      98.5    2select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg,count(score) as cnt for name in('张三','李四','王五'));
-- 执行结果
subject 张三_score1     张三_avg        张三_cnt        李四_score1     李四_avg        李四_cnt        王五_score1     王五_avg        王五_cnt
英语    85      85.0    1       80      80.0    1       NULL    NULL    NULL
语文    95      95.0    1       90      90.0    1       99      99.0    1
数学    100     100.0   1       100     100.0   1       98      98.0    1

上述示例1中pivot1表中所有的字段中都参与了pivot函数,或在聚合函数中或在for后,因此SQL执行结果中将不会包含测试表中的原始列,聚合条件即为name。
示例2中pivot1表中subject字段没有参与pivot函数,因此SQL执行结果中会包含subject列的全部值,然后该值会加入到聚合条件中,聚合条件为subject+name。

这篇关于Spark pivot数据透视从句的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932973

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者