Spark pivot数据透视从句

2024-04-24 22:12
文章标签 数据 透视 spark 从句 pivot

本文主要是介绍Spark pivot数据透视从句,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 1. 概念
  • 2. 实战
    • 2.1. 新列的决定因素
    • 2.2. 新列别名
    • 2.3. column_list中指定多个字段
    • 2.4. 多个聚合函数的使用
    • 2.5. 最终出现在SQL结果中的决定因素

Spark pivot数据透视从句

1. 概念

  • 描述
    用于数据透视,根据特定的列获取聚合值,聚合值将转换为select子句中使用的多列。可以在表名或子查询后指定pivot子句
  • 使用场景
    常见的使用场景之一,对数据进行行转列操作
  • 语法格式
select *
From Table
PIVOT ( { aggregate_expression [ AS aggregate_expression_alias ] } [ , ... ]FOR column_list IN ( expression_list ) )

column_list:可供选择的列为From子句中的列,将使用指定列下的值用于生成新的列。
expression_list:column_list中指定列的值。可以指定别名,指定别名后,则使用别名作为新列名,否则将直接使用列值作为新字段名。

接下来通过几个例子来理解pivot的具体用法。

2. 实战

构键测试数据

CREATE TABLE pivot1 (name STRING, subject string, score INT);
INSERT overwrite table pivot1
select inline(array(
struct('张三','语文',95),
struct('张三','英语',85),
struct('张三','数学',100),
struct('李四','语文',90),
struct('李四','英语',80),
struct('李四','数学',100),
struct('王五','语文',99),
struct('王五','数学',98)
));

2.1. 新列的决定因素

select *
from pivot1 
pivot(max(score) as score1 for subject in('语文','英语','数学'));
-- 执行结果
name    语文    英语    数学
王五    99      NULL    98
李四    90      80      100
张三    95      85      100select *
from pivot1 
pivot(max(score) as score1 for subject in('语文','英语'));
-- 执行结果
name    语文    英语
王五    99      NULL
李四    90      80
张三    95      85select *
from pivot1 
pivot(max(score) as score1 for subject in('英语'));
-- 执行结果
name    英语
王五    NULL
李四    80
张三    85

结果中新列取决于column_list和expression_list的共同影响,在上述示例中表示将pivot1表中subject列下的值作为新的结果列,但是具体将哪些值作为新列,取决于in后面的字段值列表。

2.2. 新列别名

select name,c,e,m
from pivot1 
pivot(max(score) as score1 for subject in('语文' as c,'英语' as e,'数学' as m));
-- 执行结果
name    c       e       m
王五    99      NULL    98
李四    90      80      100
张三    95      85      100

在in中指定的别名将作为新列的名称。

2.3. column_list中指定多个字段

select *
from pivot1 
pivot(max(score) as score1 for (subject,name) in(('语文','张三'),('语文','李四'),('语文','王五')));
-- 执行结果
[语文, 张三]    [语文, 李四]    [语文, 王五]
95             90             99

当column_list中指定多个字段时,须使用括号,并且expression_list中指定的字段值也需要使用括号,二者括号中内容顺序需要保持一致。
for (subject,name) in(('语文','张三'),('语文','李四'),('语文','王五'))最终决定测试表中只有以下数据参与计算。

'张三','语文',95
'李四','语文',90
'王五','语文',99

2.4. 多个聚合函数的使用

select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg for subject in('语文','英语','数学'));
-- 执行结果
name    语文_score1     语文_avg        英语_score1     英语_avg        数学_score1     数学_avg
王五     99             99.0           NULL            NULL           98             98.0
李四     90             90.0           80              80.0           100            100.0
张三     95             95.0           85              85.0           100            100.0select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg for subject in('语文','英语'));
-- 执行结果
name    语文_score1     语文_avg        英语_score1     英语_avg
王五     99             99.0           NULL            NULL
李四     90             90.0           80              80.0
张三     95             95.0           85              85.0

上述SQL1中,原始表中3个字段列,只有name列在pivot中未涉及,但是最终结果将会包含name列下的全部值。
理解聚合函数的聚合粒度是什么?
在in中指定的值将会作为聚合条件之一,同时由于name未参与pivot函数使得结果包含全部name列值,因此结合起来的聚合条件就是name+subject

这里得出部分结论

  • column_list中已指定的列将不会出现在最终结果中
  • 聚合函数中使用的列也不会出现在最终结果中
  • 只有在column_list和聚合函数中都没有使用的列,才会原模原样出现在最终结果中,并且会将这些列作为聚合条件的一部分

2.5. 最终出现在SQL结果中的决定因素

select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg,count(subject) as cnt for name in('张三','李四','王五'));
-- 执行结果
张三_score1     张三_avg        张三_cnt        李四_score1     李四_avg        李四_cnt        王五_score1     王五_avg        王五_cnt
100     93.33333333333333       3       100     90.0    3       99      98.5    2select *
from pivot1 
pivot(max(score) as score1,avg(score) as avg,count(score) as cnt for name in('张三','李四','王五'));
-- 执行结果
subject 张三_score1     张三_avg        张三_cnt        李四_score1     李四_avg        李四_cnt        王五_score1     王五_avg        王五_cnt
英语    85      85.0    1       80      80.0    1       NULL    NULL    NULL
语文    95      95.0    1       90      90.0    1       99      99.0    1
数学    100     100.0   1       100     100.0   1       98      98.0    1

上述示例1中pivot1表中所有的字段中都参与了pivot函数,或在聚合函数中或在for后,因此SQL执行结果中将不会包含测试表中的原始列,聚合条件即为name。
示例2中pivot1表中subject字段没有参与pivot函数,因此SQL执行结果中会包含subject列的全部值,然后该值会加入到聚合条件中,聚合条件为subject+name。

这篇关于Spark pivot数据透视从句的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932973

相关文章

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数