OFDM同步技术

2024-04-24 21:28
文章标签 技术 同步 ofdm

本文主要是介绍OFDM同步技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、OFDM 同步技术
  • 二、MATLAB 仿真
    • 1、STO 估计技术
      • ①、核心源码
      • ②、仿真结果
    • 2、CFO 估计技术
      • ①、核心源码
      • ②、仿真结果
  • 三、资源自取


前言

本文对 OFDM 同步技术以思维导图的形式呈现,有关仿真部分进行了讲解实现。


一、OFDM 同步技术

OFDM 同步技术思维导图如下图所示,如有需求请到文章末尾端自取。
在这里插入图片描述

二、MATLAB 仿真

1、STO 估计技术

①、核心源码

%基于CP,采用最大相关和最小距离算法完成STO的估计clear, figure(1), clf, figure(2), clf
nSTOs = [-3 -3 2 2];                % 对应 STO 的采样数  提前、提前、滞后、滞后
CFOs = [0 0.5 0 0.5];               % CFO 向量
SNRdB = 30;                         % SNR
MaxIter = 10;                       % 迭代次数
%CFOs = [0 0 0 0];
Nfft = 128;                         % FFT 大小
Ng = Nfft/4;                        % GI 长度
Nofdm = Nfft + Ng;                  % OFDM 符号长度
Nbps = 2;                           % 2/4 对应 QPSK/16QAM 
M = 2^Nbps;                         % 符号对应的可能性数量
Es = 1; 
A = sqrt(3/2/(M-1)*Es);             % QAM 归一化因子
N = Nfft; 
com_delay = Nofdm/2;                % 公共时延
Nsym = 100;                         % 一共有一百个 OFDM 符号
rand('seed',1);                     % 设置种子
randn('seed',1);
for i = 1:length(nSTOs)             % 对于每一个不同的 \delta STOnSTO = nSTOs(i);  CFO = CFOs(i);x = [];                          % 初始化信号块,最后 x 就是发送出来的 OFDM 模块for m = 1:Nsym % 随机位生成 msgint=randi([0 M-1], 1, N);  % 生成传输符号,1*128 个 0-3 的数Xf = A .* qammod(msgint, M, 'UnitAveragePower', true);% 调制成复数%***********************缺少了倒置的过程***********************%xt = ifft(Xf, Nfft);          % 发送x_sym = add_CP(xt, Ng);       % 加 CPx = [x x_sym];end%*********************** 信道 ************************%%%%%%在这里根据需求添加信道,先假设是没有信道y = x;  % 没有信道影响sig_pow = y*y' / length(y);          % 计算能量,sig_pow= mean(mean(y.*conj(y),2))% 频率偏移 + 符号定时偏移 y_CFO = add_CFO(y, CFO, Nfft);       % 加 CFOy_CFO_STO = add_STO(y_CFO, -nSTO);   % 加STO,这是加在整个信号上的,因此头尾补零就行了;但是取-是因为:δ<0 是提前,δ>0是滞后v_ML = zeros(1, Ng);                 % 初始化v_Cl = zeros(1, Ng);Mag_cor = 0;                         % arg的结果Mag_dif = 0;%%添加加性高斯白噪声for iter = 1:MaxIter% 加噪声y_aw = awgn(y_CFO_STO, SNRdB, 'measured');%%%%%%%符号定时获取[STO_cor, mag_cor] = STO_by_correlation(y_aw, Nfft, Ng, com_delay);               % 书中自带[STO_cor_temp,mag_cor_temp] = STO_by_correlation_sim1(y_aw,Nfft,Ng,com_delay);    % 我自己编写%%%%%经验证,以上两者函数结果一致[STO_dif,mag_dif] = STO_by_difference(y_aw,Nfft,Ng,com_delay); %书中自带[STO_dif_temp,mag_dif_temp] = STO_by_difference_sim1(y_aw,Nfft,Ng,com_delay); %我自己编写%%%%%经验证,以上两者函数结果一致% 计数% 这里取反了,返回了符合"左加右减"的直觉的STOv_ML(-STO_cor+Ng/2)= v_ML(-STO_cor+Ng/2)+1;v_Cl(-STO_dif+Ng/2)= v_Cl(-STO_dif+Ng/2)+1;Mag_cor= Mag_cor + mag_cor;Mag_dif= Mag_dif + mag_dif;end % End of for loop of iter%%%%%%% Probabilityv_ML_v_Cl = [v_ML; v_Cl]*(100/MaxIter);      % 取百分数figure(1+i-1); set(gca,'fontsize',9);   % 将当前坐标轴的字体大小设置为9
%    subplot(220+i)bar(-Ng/2+1:Ng/2,v_ML_v_Cl');hold on, grid onstr = sprintf('nSTO Estimation: nSTO=%d, CQFO=%1.2f, SNR=%3d[dB]',nSTO,CFO,SNRdB);           title(str); xlabel('Sample'), ylabel('Probability');legend('ML','Classen'); axis([-Ng/2-1 Ng/2+1 0 100])%%%%%%% Time metricMag_cor = Mag_cor/MaxIter; [Mag_cor_max,ind_max] = max(Mag_cor);nc= ind_max-1-com_delay;Mag_dif = Mag_dif/MaxIter; [Mag_dif_min,ind_min] = min(Mag_dif);nd= ind_min-1-com_delaynn= -Nofdm/2 + [0:length(Mag_cor)-1];  % -80~79
%   nt= nSTO;
%    figure(2);
%    subplot(220+i);figure(5+i-1); plot(nn,Mag_cor,nn,1.5*Mag_dif,'r:','markersize',1);hold onstem(nc,Mag_cor_max,'b','markersize',5);stem(nSTO,Mag_cor(nSTO+com_delay+1),'k.','markersize',5); % Estimated/True Maximum valuestr1 = sprintf('STO Estimation - ML(b-)/Classen(r:) for nSTO=%d, CFO=%1.2f',nSTO,CFO); %,SNRdB);title(str1); xlabel('Sample'), ylabel('Magnitude'); %stem(n1,Mag_dif_min,'r','markersize',5)stem(nd,Mag_dif(nd+com_delay+1),'r','markersize',5);stem(nSTO,Mag_dif(nSTO+com_delay+1),'k.','markersize',5); % Estimated/True Minimum valueset(gca,'fontsize',9, 'XLim',[-32 32], 'XTick',[-10 -3 0 2 10]); %, xlim([-50 50]),legend('基于相关的','基于差值最小的'); 
end % End of for loop of i

完整源码文末自取

②、仿真结果

在这里插入图片描述
在这里插入图片描述

由上两个图所示,当 STO = -3,CFO = 0时,可以看到基于差值最小的方法估计的 STO 更为准确。
在这里插入图片描述
在这里插入图片描述
由上两个图所示,当 STO = -3,CFO = 0.5时,可以看到基于差值最小的方法和基于相关估计的 STO 都很准确。
在这里插入图片描述
在这里插入图片描述
由上两个图所示,当 STO = 2,CFO = 0 时,可以看到基于差值最小的方法和基于相关估计的 STO 都很准确。
在这里插入图片描述
在这里插入图片描述
由上两个图所示,当 STO = 2,CFO = 0.5 时,可以看到基于差值最小的方法估计的 STO 更为准确。

2、CFO 估计技术

①、核心源码

%完成时域基于CP的方法和频域的Moose/Classen方法,用于后续CFO补偿
clear, clf
CFO = 0.15;                     % CFO(载波频率偏移)大小
% CFO = 0;
Nfft=128;                       % FFT采样数  
Nbps=2;                         % QPSK或QAM
M=2^Nbps;                       % 每个符号代表几比特
Es=1;                           % 能量
A=sqrt(3/2/(M-1)*Es);           % QAM归一化
N=Nfft;                         % 发送的符号长度,为了方便,和Nfft保持一致
Ng=Nfft/4;                      % GI长度
Nofdm=Nfft+Ng;                  % 一个OFDM符号的长度
Nsym=3;                         % 一共发送了3个OFDM符号,前两个是导频,最后一个是真正发送的数据符号
% h=complex(randn,randn)/sqrt(2);
% %h=[1 zeros(1,5)]; 
% channel(h,0);  
%Transmit signal
x=[];
for m=1:Nsym                    % 前两个是导频,最后一个是真正发送的数据符号msgint=randi([0 M-1],1,N);   % 生成要发送的符号if m<=2                      % Xp = add_pilot(zeros(1,Nfft),Nfft,4);    % 生成导频Xf=Xp; % add_pilotelse  %Xf= QAM(msgint((i-1)*N+1:i*N),Nbps);  % constellation mapping. average power=1        Xf = A.*qammod(msgint,M,'UnitAveragePower',true);end                                      xt = ifft(Xf,Nfft);          % ifft  x_sym = add_CP(xt,Ng);       % 加CPx= [x x_sym];                % 将三个OFDM符号依次拼接
end    %channel 可添加所需信道
y=x; % No channel effect%Signal power calculation
sig_pow= y*y'/length(y); % Signal power calculation%%%%
SNRdBs= 0:3:30;  
% SNRdBs= 100; 设100是为调试程序  
MaxIter = 100;  
for i=1:length(SNRdBs)SNRdB = SNRdBs(i);MSE_CFO_CP = 0; MSE_CFO_Moose = 0; MSE_CFO_Classen = 0;rand('seed',1);              % 设置种子来保证每次仿真结果一致randn('seed',1);y_CFO= add_CFO(y,CFO,Nfft);  % 增加CFO,此处是在时域添加的,因此是×相位% 多次迭代取平均for iter=1:MaxIter%y_aw=add_AWGN(y_CFO,sig_pow,SNRdB,'SNR',Nbps);  % AWGN added, signal power=1y_aw = awgn(y_CFO,SNRdB,'measured');              % 增加高斯白噪声Est_CFO_CP = CFO_CP(y_aw,Nfft,Ng); % CP-based     % 根据CP测算CFOMSE_CFO_CP = MSE_CFO_CP + (Est_CFO_CP-CFO)^2;     % 平方累计Est_CFO_Moose = CFO_Moose(y_aw,Nfft);             % Moose估计MSE_CFO_Moose = MSE_CFO_Moose + (Est_CFO_Moose-CFO)^2;% 平方累计Est_CFO_Classen = CFO_Classen(y_aw,Nfft,Ng,Xp); % Classen (Pilot-based)MSE_CFO_Classen = MSE_CFO_Classen + (Est_CFO_Classen-CFO)^2;end % the end of for (iter) loopMSE_CP(i) = MSE_CFO_CP/MaxIter; MSE_Moose(i) = MSE_CFO_Moose/MaxIter;  MSE_Classen(i) = MSE_CFO_Classen/MaxIter;
end%ebn0 end    
semilogy(SNRdBs, MSE_CP,'-+');
grid on, hold on
semilogy(SNRdBs, MSE_Moose,'-x'); semilogy(SNRdBs, MSE_Classen,'-*');
xlabel('SNR[dB]'), ylabel('MSE'); title('CFO Estimation'); %axis([0 30 10e-8 10e-2])
% str=sprintf('CFO = %1.2f',CFO);
legend('CP-based technique','Moose (Preamble-based)','Classen (Pilot-based)');
% legend(str);

完整源码文末自取

②、仿真结果

在这里插入图片描述
可以观察到,随着接收信号的 SNR 增大,CFO 估计的 MSE 减小。估计技术的性能取决于用于 CFO 估计的 CP 中的采样数、前导数和导频数。

三、资源自取

链接:OFDM同步技术

在这里插入图片描述


我的qq:2442391036,欢迎交流!


这篇关于OFDM同步技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932883

相关文章

Qt如何实现文本编辑器光标高亮技术

《Qt如何实现文本编辑器光标高亮技术》这篇文章主要为大家详细介绍了Qt如何实现文本编辑器光标高亮技术,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录实现代码函数作用概述代码详解 + 注释使用 QTextEdit 的高亮技术(重点)总结用到的关键技术点应用场景举例示例优化建议

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Mac备忘录怎么导出/备份和云同步? Mac备忘录使用技巧

《Mac备忘录怎么导出/备份和云同步?Mac备忘录使用技巧》备忘录作为iOS里简单而又不可或缺的一个系统应用,上手容易,可以满足我们日常生活中各种记录的需求,今天我们就来看看Mac备忘录的导出、... 「备忘录」是 MAC 上的一款常用应用,它可以帮助我们捕捉灵感、记录待办事项或保存重要信息。为了便于在不同

查看MySql主从同步的偏移量方式

《查看MySql主从同步的偏移量方式》:本文主要介绍查看MySql主从同步的偏移量方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 1.mysql的主从同步方案mysqlphp为了在实现读写分离,主库写,从库读mysql的同步方案主要是通过从库读取主库的binl

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

Java使用WebView实现桌面程序的技术指南

《Java使用WebView实现桌面程序的技术指南》在现代软件开发中,许多应用需要在桌面程序中嵌入Web页面,例如,你可能需要在Java桌面应用中嵌入一部分Web前端,或者加载一个HTML5界面以增强... 目录1、简述2、WebView 特点3、搭建 WebView 示例3.1 添加 JavaFX 依赖3

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案