使用 Python库DEAP的多目标优化示例

2024-04-24 19:52

本文主要是介绍使用 Python库DEAP的多目标优化示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、说明

   在优化领域,困难往往不是来自为单个问题找到最佳解决方案,而是来自管理具有多个经常相互冲突的目标的复杂问题环境。这就是多目标优化 (MOO) 发挥作用的地方,它提供了一个解决此类多方面问题的框架。本文探讨了 MOO 的核心及其数学基础,并提供了一个动手 Python 示例来说明这些概念。

二、了解多目标优化

   多目标优化是数学建模和计算智能中的一个重要领域,专注于涉及多个目标函数同时优化的问题。这些目标通常是相互冲突的,这意味着改进一个目标可能会使另一个目标恶化。MOO 的目标不是找到单一的最优解决方案,而是确定一组最佳解决方案,同时考虑相互竞争的目标之间的权衡。

核心理念:

   目标:优化过程寻求实现的不同目标。在 MOO 中,总是有两个或多个目标。
帕累托最优性:如果一个目标不能在不恶化至少一个其他目标的情况下得到改进,则解决方案是帕累托最优的。这些解决方案的集合形成了帕累托阵线。
   权衡:必须在目标之间做出妥协,因为改进一个目标通常是以牺牲另一个目标为代价的。

三、多目标优化中的数学建模

3.1 多目标优化任务定义

   多目标优化问题可以用数学公式表述如下:
给出一组函数: f 1 ( x ) , f 2 ( x ) , f 3 ( x ) . . . f k ( x ) f_1(x),f_2(x),f_3(x)...f_k(x) f1(x),f2(x),f3(x)...fk(x)
服从条件: x ∈ X x \in X xX
f 1 , f 2 , f 3 . . . f k f_1 ,f_2 ,f_3 ...f_k f1,f2,f3...fk是目标函数,在优化中取最大或最小。
X:表示合理化集合,盛放x的所有可能取值。
此时用python的DEAP库进行实现。首先给出一个例子:
example 1:最小化的目标函数 f 1 ( x ) = x 2 f_1(x)=x^2 f1(x)=x2,最小化目标函数: f 1 ( x ) = ( x − 2 ) 2 f_1(x)=(x-2)^2 f1(x)=x22

3.2 环境设定

   安装deap命令

pip install deap

3.3 精心设计解决方案

   让我们看一下代码,分解每个步骤,以了解如何使用 DEAP 实现 MOO。

第 1 步:定义问题

   首先,我们需要根据 DEAP 的框架来定义我们的问题,明确我们目标的性质和我们个人的结构(解决方案)。

from deap import base, creator, tools, algorithms
import random# Problem definition
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))  # Minimize both objectives
creator.create("Individual", list, fitness=creator.FitnessMin)  # Define individual structure

步骤 2:初始化工具箱

   DEAP中的工具箱是我们注册遗传操作的方法的地方,例如突变,交叉和选择,以及我们针对特定问题的配置。

toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, -10, 10)  # Decision variable range
toolbox.register("individual", tools.initRepeat, creator.Individual,toolbox.attr_float, n=1)  # Individual creation
toolbox.register("population", tools.initRepeat, list, toolbox.individual)  # Population creation

步骤 3:定义评估函数

   我们的评估功能计算给定解决方案的目标。这个功能至关重要,因为它指导着进化过程。

def evaluate(individual):x = individual[0]return x**2, (x-2)**2  # The two objectives
toolbox.register("evaluate", evaluate)

第 4 步:遗传算子

   我们定义了交配(交叉)、突变和选择的遗传算子。这些算子使解决方案能够向帕累托前沿演进。

toolbox.register("mate", tools.cxBlend, alpha=0.5)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)  # NSGA-II selection algorithm

第 5 步:进化算法

最后,我们实现了主要的进化循环,将我们的人口进化到帕累托前沿。

def main():random.seed(1)population = toolbox.population(n=100)  # Initial populationNGEN = 50  # Number of generations# Evolutionary loopfor gen in range(NGEN):offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.2)fits = toolbox.map(toolbox.evaluate, offspring)for fit, ind in zip(fits, offspring):ind.fitness.values = fitpopulation = toolbox.select(offspring, k=len(population))return populationif __name__ == "__main__":pop = main()front = tools.emo.sortNondominated(pop, len(pop), first_front_only=True)[0]# Display the Pareto frontprint("Pareto Front:")for ind in front:print(ind.fitness.values)

四、结论

   此 Python 示例演示了 DEAP 在通过进化算法解决多目标优化问题方面的强大功能。通过开发几代人的解决方案,我们可以近似于帕累托前沿,为决策者提供一系列相互竞争的目标之间的最佳权衡。

   多目标优化是一个广阔而活跃的领域,其应用范围从工程设计到金融投资组合管理。这里讨论的原理和技术提供了一个基础,但对MOO的探索是广泛而有益的,还有更多的东西可以检查和应用于现实世界的问题。

这篇关于使用 Python库DEAP的多目标优化示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932691

相关文章

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文