使用 Python库DEAP的多目标优化示例

2024-04-24 19:52

本文主要是介绍使用 Python库DEAP的多目标优化示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、说明

   在优化领域,困难往往不是来自为单个问题找到最佳解决方案,而是来自管理具有多个经常相互冲突的目标的复杂问题环境。这就是多目标优化 (MOO) 发挥作用的地方,它提供了一个解决此类多方面问题的框架。本文探讨了 MOO 的核心及其数学基础,并提供了一个动手 Python 示例来说明这些概念。

二、了解多目标优化

   多目标优化是数学建模和计算智能中的一个重要领域,专注于涉及多个目标函数同时优化的问题。这些目标通常是相互冲突的,这意味着改进一个目标可能会使另一个目标恶化。MOO 的目标不是找到单一的最优解决方案,而是确定一组最佳解决方案,同时考虑相互竞争的目标之间的权衡。

核心理念:

   目标:优化过程寻求实现的不同目标。在 MOO 中,总是有两个或多个目标。
帕累托最优性:如果一个目标不能在不恶化至少一个其他目标的情况下得到改进,则解决方案是帕累托最优的。这些解决方案的集合形成了帕累托阵线。
   权衡:必须在目标之间做出妥协,因为改进一个目标通常是以牺牲另一个目标为代价的。

三、多目标优化中的数学建模

3.1 多目标优化任务定义

   多目标优化问题可以用数学公式表述如下:
给出一组函数: f 1 ( x ) , f 2 ( x ) , f 3 ( x ) . . . f k ( x ) f_1(x),f_2(x),f_3(x)...f_k(x) f1(x),f2(x),f3(x)...fk(x)
服从条件: x ∈ X x \in X xX
f 1 , f 2 , f 3 . . . f k f_1 ,f_2 ,f_3 ...f_k f1,f2,f3...fk是目标函数,在优化中取最大或最小。
X:表示合理化集合,盛放x的所有可能取值。
此时用python的DEAP库进行实现。首先给出一个例子:
example 1:最小化的目标函数 f 1 ( x ) = x 2 f_1(x)=x^2 f1(x)=x2,最小化目标函数: f 1 ( x ) = ( x − 2 ) 2 f_1(x)=(x-2)^2 f1(x)=x22

3.2 环境设定

   安装deap命令

pip install deap

3.3 精心设计解决方案

   让我们看一下代码,分解每个步骤,以了解如何使用 DEAP 实现 MOO。

第 1 步:定义问题

   首先,我们需要根据 DEAP 的框架来定义我们的问题,明确我们目标的性质和我们个人的结构(解决方案)。

from deap import base, creator, tools, algorithms
import random# Problem definition
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))  # Minimize both objectives
creator.create("Individual", list, fitness=creator.FitnessMin)  # Define individual structure

步骤 2:初始化工具箱

   DEAP中的工具箱是我们注册遗传操作的方法的地方,例如突变,交叉和选择,以及我们针对特定问题的配置。

toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, -10, 10)  # Decision variable range
toolbox.register("individual", tools.initRepeat, creator.Individual,toolbox.attr_float, n=1)  # Individual creation
toolbox.register("population", tools.initRepeat, list, toolbox.individual)  # Population creation

步骤 3:定义评估函数

   我们的评估功能计算给定解决方案的目标。这个功能至关重要,因为它指导着进化过程。

def evaluate(individual):x = individual[0]return x**2, (x-2)**2  # The two objectives
toolbox.register("evaluate", evaluate)

第 4 步:遗传算子

   我们定义了交配(交叉)、突变和选择的遗传算子。这些算子使解决方案能够向帕累托前沿演进。

toolbox.register("mate", tools.cxBlend, alpha=0.5)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)  # NSGA-II selection algorithm

第 5 步:进化算法

最后,我们实现了主要的进化循环,将我们的人口进化到帕累托前沿。

def main():random.seed(1)population = toolbox.population(n=100)  # Initial populationNGEN = 50  # Number of generations# Evolutionary loopfor gen in range(NGEN):offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.2)fits = toolbox.map(toolbox.evaluate, offspring)for fit, ind in zip(fits, offspring):ind.fitness.values = fitpopulation = toolbox.select(offspring, k=len(population))return populationif __name__ == "__main__":pop = main()front = tools.emo.sortNondominated(pop, len(pop), first_front_only=True)[0]# Display the Pareto frontprint("Pareto Front:")for ind in front:print(ind.fitness.values)

四、结论

   此 Python 示例演示了 DEAP 在通过进化算法解决多目标优化问题方面的强大功能。通过开发几代人的解决方案,我们可以近似于帕累托前沿,为决策者提供一系列相互竞争的目标之间的最佳权衡。

   多目标优化是一个广阔而活跃的领域,其应用范围从工程设计到金融投资组合管理。这里讨论的原理和技术提供了一个基础,但对MOO的探索是广泛而有益的,还有更多的东西可以检查和应用于现实世界的问题。

这篇关于使用 Python库DEAP的多目标优化示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932691

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三