探索人工智能——人工智能起源

2024-04-24 18:32
文章标签 探索 人工智能 起源

本文主要是介绍探索人工智能——人工智能起源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天开始慢慢进入人工智能的介绍与算法网络等的实现的“传送期”,希望大家能够喜欢!

好,揭幕!!

一、人工智能介绍
什么是人工智能?可能是大家一开始最想了解的。


大家看图中关于人工智能的定义。通俗点来说呢,就是 让机器实现原来只有人类才能完成的任务;比如看懂照片,听懂说话,思考等等。

那现在耳熟能详的机器学习,深度学习和人工智能又是什么关系呢?

看下图:


人工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。“人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

二、 人工智能的5个研究发展阶段
第一阶段:50年代人工智能的兴起和冷落

人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。

第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮

DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即”知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

第四阶段:80年代末,神经网络飞速发展 1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:90年代,人工智能出现新的研究高潮 由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

目前人工智能应用人工智能是在计算机科学、控制论、信息论、心理学、语言学等多种学科相互渗透的基础发展起来的一门新兴边缘学科,主要研究用用机器(主要是计算机)来模仿和实现人类的智能行为,经过几十年的发展,人工智能应用在不少领域得到发展,在我们的日常生活和学习当中也有许多地方得到应用。

三、回顾下人工智能这60年历程关键事件
时至今日,人工智能发展日新月异,此刻AI已经走出实验室,离开棋盘,已通过智能客服、智能医生、智能家电等服务场景在诸多行业进行深入而广泛的应用。可以说,AI正在全面进入我们的日常生活,属于未来的力量正席卷而来。让我们来回顾下人工智能走过的曲折发展的60年历程中的一些关键事件:

1946年,全球第一台通用计算机ENIAC诞生。它最初是为美军作战研制,每秒能完成5000次加法,400次乘法等运算。ENIAC为人工智能的研究提供了物质基础。

1950年,艾伦·图灵提出“图灵测试”。如果电脑能在5分钟内回答由人类测试者提出的一些列问题,且其超过30%的回答让测试者误认为是人类所答,则通过测试。这边论文语言了创造出具有真正智能的机器的可能性。

1956年,“人工智能”概念首次提出。在美国达特茅斯大学举行的一场为其两个月的讨论会上,“人工智能”概念首次被提出。

1959年,首台工业机器人诞生。美国发明家乔治·德沃尔与约瑟夫·英格伯格发明了首台工业机器人,该机器人借助计算机读取示教存储程序和信息,发出指令控制一台多自由度的机械。它对外界环境没有感知。

1964年,首台聊天机器人诞生。美国麻省理工学院AI实验室的约瑟夫·魏岑鲍姆教授开发了ELIZA聊天机器人,实现了计算机与人通过文本来交流。这是人工智能研究的一个重要方面。不过,它只是用符合语法的方式将问题复述一遍。

1965年,专家系统首次亮相。美国科学家爱德华·费根鲍姆等研制出化学分析专家系统程序DENDRAL。它能够分析实验数据来判断未知化合物的分子结构。

1968年,首台人工智能机器人诞生。美国斯坦福研究所(SRI)研发的机器人Shakey,能够自主感知、分析环境、规划行为并执行任务,可以感觉人的指令发现并抓取积木。这种机器人拥有类似人的感觉,如触觉、听觉等。

1970年,能够分析语义、理解语言的系统诞生。美国斯坦福大学计算机教授T·维诺格拉德开发的人机对话系统SHRDLU,能分析指令,比如理解语义、解释不明确的句子、并通过虚拟方块操作来完成任务。由于它能够正确理解语言,被视为人工智能研究的一次巨大成功。

1976年,专家系统广泛使用。美国斯坦福大学肖特里夫等人发布的医疗咨询系统MYCIN,可用于对传染性血液病患诊断。这一时期还陆续研制出了用于生产制造、财务会计、金融等个领域的专家系统。

1980年,专家系统商业化。美国卡耐基·梅隆大学为DEC公司制造出XCON专家系统,帮助DEC公司每年节约4000万美元左右的费用,特别是在决策方面能提供有价值的内容。

1981年,第五代计算机项目研发。日本率先拨款支持,目标是制造出能够与人对话、翻译语言、解释图像,并能像人一样推理的机器。随后,英美等国也开始为AI和信息技术领域的研究提供大量资金。

1984年,大百科全书(Cyc)项目。Cyc项目试图将人类拥有的所有一般性知识都输入计算机,建立一个巨型数据库,并在此基础上实现知识推理,它的目标是让人工智能的应用能够以类似人类推理的方式工作,成为人工智能领域的一个全新研发方向。

1997年,“深蓝”战胜国际象棋世界冠军。IBM公司的国际象棋电脑深蓝DeepBlue战胜了国际象棋世界冠军卡斯帕罗夫。它的运算速度为每秒2亿步棋,并存有70万份大师对战的棋局数据,可搜寻并估计随后的12步棋。

2011年,Watson参加智力问答节目。 IBM开发的人工智能程序“沃森”(Watson)参加了一档智力问答节目并战胜了两位人类冠军。沃森存储了2亿页数据,能够将于问题相关的关键词从看似相关的答案中抽取出来。这一人工智能程序已被IBM广泛应用于医疗诊断领域。

2016~2017年,AlphaGo战胜围棋冠军。AlphaGo是由Google DeepMind开发的人工智能围棋程序,具有自我学习能力。它能够搜集大量围棋对弈数据和名人棋谱,学习并模仿人类下棋。DeepMind已进军医疗保健等领域。

2017年,深度学习大热。AlphaGoZero(第四代AlphaGo)在无任何数据输入的情况下,开始自学围棋3天后便以100:0横扫了第二版本的“旧狗”,学习40天后又战胜了在人类高手看来不可企及的第三个版本“大师”。

综上可以大概的将人工智能分成三个阶段:


第一阶段:人工智能起步期

第二阶段:专家系统推广期

第三阶段:深度学习时期

我们也就是正处在深度学习的时期,把握住机会在人工智能深度学习还未大量爆发的时期,多了解学习下,让自己跟进时代的步伐,当然未来的强化学习更是最主要的方向,技术更新迭代,你做好准备了么?
 

大量人工智能学习资料在这里可以找到:http://www.diyigaodu.com/ai/

这篇关于探索人工智能——人工智能起源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932504

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

基于人工智能的智能家居语音控制系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 随着物联网(IoT)和人工智能技术的发展,智能家居语音控制系统已经成为现代家庭的一部分。通过语音控制设备,用户可以轻松实现对灯光、空调、门锁等家电的控制,提升生活的便捷性和舒适性。本文将介绍如何构建一个基于人工智能的智能家居语音控制系统,包括环境准备

轻松录制每一刻:探索2024年免费高清录屏应用

你不会还在用一些社交工具来录屏吧?现在的市面上有不少免费录屏的软件了。别看如软件是免费的,它的功能比起社交工具的录屏功能来说全面的多。这次我就分享几款我用过的录屏工具。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  这个软件的操作方式非常简单,打开软件之后从界面设计就能看出来这个软件操作的便捷性。界面的设计简单明了基本一打眼你就会轻松驾驭啦

深入探索嵌入式 Linux

摘要:本文深入探究嵌入式 Linux。首先回顾其发展历程,从早期尝试到克服诸多困难逐渐成熟。接着阐述其体系结构,涵盖硬件、内核、文件系统和应用层。开发环境方面包括交叉编译工具链、调试工具和集成开发环境。在应用领域,广泛应用于消费电子、工业控制、汽车电子和智能家居等领域。关键技术有内核裁剪与优化、设备驱动程序开发、实时性增强和电源管理等。最后展望其未来发展趋势,如与物联网融合、人工智能应用、安全性与

从希腊神话到好莱坞大片,人工智能的七大历史时期值得铭记

本文选自historyextra,机器之心编译出品,参与成员:Angulia、小樱、柒柒、孟婷 你可能听过「技术奇点」,即本世纪某个阶段将出现超级智能,那时,技术将会以人类难以想象的速度飞速发展。同样,黑洞也是一个奇点,在其上任何物理定律都不适用;因此,技术奇点也是超越未来理解范围的一点。 然而,在我们到达那个奇点之前(假设我们能到达),还存在另一个极大的不连续问题,我将它称之

[Day 73] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

AI在健康管理中的應用實例 1. 引言 隨著健康管理需求的提升,人工智能(AI)在該領域的應用越來越普遍。AI可以幫助醫療機構提升效率、精準診斷疾病、個性化治療方案,以及進行健康數據分析,從而改善病患的健康狀況。這篇文章將探討AI如何應用於健康管理,並通過具體代碼示例說明其技術實現。 2. AI在健康管理中的主要應用場景 個性化健康建議:通過分析用戶的健康數據,如飲食、運動、睡眠等,AI可

【vue3|第28期】 Vue3 + Vue Router:探索路由重定向的使用与作用

日期:2024年9月8日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉在这里插入代码片得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方,还望各位大佬不吝赐教,谢谢^ - ^ 1.01365 = 37.7834;0.99365 = 0.0255 1.02365 = 1377.4083;0.98365 = 0.0006 说

多云架构下大模型训练的存储稳定性探索

一、多云架构与大模型训练的融合 (一)多云架构的优势与挑战 多云架构为大模型训练带来了诸多优势。首先,资源灵活性显著提高,不同的云平台可以提供不同类型的计算资源和存储服务,满足大模型训练在不同阶段的需求。例如,某些云平台可能在 GPU 计算资源上具有优势,而另一些则在存储成本或性能上表现出色,企业可以根据实际情况进行选择和组合。其次,扩展性得以增强,当大模型的规模不断扩大时,单一云平