本文主要是介绍26版SPSS操作教程(高级教程第十三章),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
前言
#今日世界读书日,宝子你,读书了嘛~
#本期内容:主成分分析、因子分析、多维偏好分析
#由于导师最近布置了学习SPSS这款软件的任务,因此想来平台和大家一起交流下学习经验,这期推送内容接上一次高级教程第十二章的学习笔记,希望能得到一些指正和帮助~
粉丝及官方意见说明
#针对官方爸爸的意见说的推送缺乏操作过程的数据案例文件澄清如下:1、操作演示的数据全部由我本人随意假设输进去的,重在演示操作;2、本人也只是在学习阶段,希望友友们能谅解哈,手里有数据的宝子当然更好啦,没有咱就自己假设数据练习一下也没多大关系的哈;3、我也会在后续教程中尽量增加一些数据的必要性说明;4、大家有什么好的意见也可以在评论区一起交流吖~
第十三章一些学习笔记
- SPSS中的主成分分析是考察多个变量相关性的一种多元统计方法,其应用目的主要为信息浓缩,常常被作为许多大型研究的中间步骤,在对信息进行浓缩后继续采用其他多元统计分析方法解决实际问题。--统计分析高级教程(第三版)P239
- 主成分分析中的一些概念:1、信息:表示变异的大小;2、特征值:代表引入主成分后可以解释平均多少个原始变量的信息,一般选特征值大于1的主成分纳入分析;3、主成分Zi的方差贡献率:表明主成分Zi的方差在总样本方差中的比重,这个值越大,表明主成分携带的原始信息量越多;4、累计贡献率:表明前k个主成分累计提取了多少原始信息,一般该指标达到85%即可。主成分分析主要有两个用途:1、主成分评价;2、主成分回归【由于主成分估计不是无偏估计,其核心目的是得到符合专业知识的回归系数估计,而不是预测效果最好的回归方程】。--统计分析高级教程(第三版)P240-241
- SPSS中的因子分析不仅考虑进行信息浓缩,还希望能够进一步阐明这些指标间的内在关联结构,发现这些实测指标所代表的潜在因子。--统计分析高级教程(第三版)P245
- 因子分析中的概念:1、因子荷载:表示变量依赖于某因子的程度;2、变量共同度(communalities):也称公因子方差比,表示全部公因子对变量总方差所做出的贡献,数值在0-1之间,值越大说明该变量能被公因子解释的信息比例越高,若各因子完全正交,则公因子方差比和因子荷载是可换算的。因子分析的适用条件:1、样本量不能太小【样本量应当是变量数的10倍以上,理想的话最好是25倍以上,总样本量理论要求在100例以上,样本量不满足要求时,模型可能不稳定,采取结果解释时需要谨慎】;2、各变量间应当具有相关性【若变量相互独立,则无法提取公因子,即无法进行因子分析了】;3、因子分析中各公因子应当具有实际意义。--统计分析高级教程(第三版)P245-246
- 因子分析可以分为探索性因子分析和验证性因子分析:1、探索性因子分析(exploratory factor analysis)主要目的在于得到因子的个数,并进一步寻求各个因子的含义;2、验证性因子分析(confirmatory factor analysis)一般需要通过结构方程模型加以拟合。其主要用途主要有:1、在研究设计/问卷效果评估阶段,可以用因子分析来评价问卷的结构效度;2、在统计分析阶段,因子分析可以用来寻找变量间潜在结构,或者对提出的内在结构进行检验证实。--统计分析高级教程(第三版)P246
- SPSS公因子提取方法:1、主成分法(principal components);2、不加权最小平方法(unweight least square);3、广义最小二乘法(generalized least square);4、最大似然法(maximum likelihood);5、主轴因子法(principal axis factoring);6、Alpha因子分析法(alpha factoring);7、映像因子法(image factoring)。--统计分析高级教程(第三版)P254
- 主成分分析和因子分析的比较:1、两种方法的异同【主成分分析是对原始数据的协方差矩阵或相关矩阵进行的矩阵变换而来的,不要求数据矩阵有特点的结构形式,而因子分析假定矩阵有特定的模型,并满足特定的条件,否则因子分析的结果可能就是假的,当特殊因子方差贡献率为零时,主成分分析和因子分析完全等价】;2、数学关联【对主成分分析而言,特征向量就是其主成分系数矩阵】。SPSS中利用因子分析来实现主成分分析的注意事项:1、在因子分析中的“提取”子对话框中需要指定公因子数目为原始变量数,使得初始因子载荷中不包含特殊因子一铺神龙;2、计算主成分系数矩阵,即将各主成分上的荷载分别除以相应的主成分特征值的平方根。--统计分析高级教程(第三版)P255-256
第十三章一些操作方法
主成分分析、因子分析与多维偏好分析
主成分分析的过程
确定指标综合时的权重
结果解释
即主成分1的表达式为
可以看出第一主成分主要表述年收入、文化程度方面的指标。
结果优化
因子分析
结果分析
这里提取的因子表达式可以写为:
因子旋转
为了使因子荷载矩阵中的系数更加显著,常对初始因子荷载矩阵进行旋转,使相关系数的绝对值向(0,1)区间两极分化,从而更加容易解释。
结果解释
因子表达式
保存公因子得分进行综合评价
保存变量
处理变量
分类数据的主成分分析(多维偏好分析,multiple preference analysis,MPA)
界面说明
多维偏好分析研究
结果分析
多维偏好图
结束语
#好啦~,以上就是我SPSS第三十一期学习笔记——高级教程第十三章的学习情况啦~,希望能与大家交流学习经验,共同进步吖~
#考虑高级教程的难度与深度,主要是内容太多辣,后续依然会尽力更新内容~争取日更!
#也非常感谢大家对我的一路陪伴,宝子们的关注、支持和打赏就是up儿不断更新滴动力,我近期也会坚持学习SPSS,更新相应的学习内容及笔记到平台上,咱们下期高级教程不见不散~
这篇关于26版SPSS操作教程(高级教程第十三章)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!