34. BI - 美国大学生足球队的 GCN 案例

2024-04-24 09:44

本文主要是介绍34. BI - 美国大学生足球队的 GCN 案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文为 「茶桁的 AI 秘籍 - BI 篇 第 34 篇」

文章目录

    • 美国大学生足球队 Embedding(GCN)

在这里插入图片描述

Hi,你好。我是茶桁。

在上一节课中,因为需要,我们先是回顾了一下 Graph Embedding,然后跟大家讲解了 GCN 以及其算法。虽然是推导完了,不过具体要怎么使用可能很多同学还是不太清楚,那咱们这一节课,就拿一个例子来看看具体的 GCN 该怎么去用。

美国大学生足球队 Embedding(GCN)

首先用 networkx 对图做一个处理,原始数据去加载的时候是read_gml:

import networkx as nx
G = nx.read_gml(path + '/LPA/football.gml')

读进来的数据进行可视化,去看一下顶点的情况,看一下某一个数值的取值。

# 可视化
plot_graph(G)
print(list(G.nodes()))
print(G.nodes['BrighamYoung']['value'])---
['BrighamYoung', ..., 'Hawaii']
7

20240227102633

然后先对字母做个排序,排序以后对它求一个邻接矩阵。

# 按照字母顺序排序
order = sorted(list(G.nodes()))
print(order)# 邻接矩阵
A = nx.to_numpy_array(G, nodelist = order)
print(A)---
['AirForce', ..., 'Wyoming']
[[0. 0. 0. ... 0. 0. 1.][0. 0. 0. ... 0. 0. 0.][0. 0. 0. ... 0. 0. 0.]...[0. 0. 0. ... 0. 1. 0.][0. 0. 0. ... 1. 0. 0.][1. 0. 0. ... 0. 0. 0.]]

这个邻接矩阵和图是完全对应的,一个球队有比赛就为 1,没有比赛就为 0。

只是提取邻接特征可能会把自己忘下,所以还要生成一个对角矩阵。

I = np.eye(G.number_of_nodes())
A_hat = A + I
print(A_hat)---
[[1. 0. 0. ... 0. 0. 1.][0. 1. 0. ... 0. 0. 0.][0. 0. 1. ... 0. 0. 0.]...[0. 0. 0. ... 1. 1. 0.][0. 0. 0. ... 1. 1. 0.][1. 0. 0. ... 0. 0. 1.]]

将其写成一个 A_hat 这种形式做一个累加,对角矩阵的对角线都为 1,因为加了一个 I。然后我们想要求一下它的度矩阵 D_hat:

# D_hat 为 A_hat 的度矩阵
D_hat = np.sum(A_hat, axis=0)
print('D_hat: \n', D_hat)---
[[11. ... 12.]]
# 得到对角线上的元素
D_hat = np.matrix(np.diag(D_hat))
print('D_hat: \n', D_hat)---
D_hat: [[11.  0.  0. ...  0.  0.  0.]...[ 0.  0.  0. ...  0.  0. 12.]]

D_hat 本质上一开始得到的是一个向量,这个向量代表含义是你打比赛的次数,就是连接边的个数。一共有115支球队,每个球队打的比赛的次数就放上来了。原来是个向量,现在把它列成对角线,用 np.matrix 进行生成。

前面这些都生成完了,下面就要做一些特征的提取,对 GCN 的算子去进行使用。在特征提取之后,每一层的神经元都有一些连接,咱们把神经元的参数做一个除法。

# 第一层神经元, 4 个维度
W_1 = np.random.normal(loc=0, scale=1, size=(G.number_of_nodes(), 4))# 第二层神经元,4 => 2
W_2 = np.random.normal(loc=0, size=(W_1.shape[1], 2))
print('W_1: \n', W_1)
print('W_2: \n', W_2)---
W_1: [[ 1.79361799e+00  1.00663949e-01  3.15681973e-01  1.57018908e+00]
...[ 3.83597029e-02 -4.11584967e-02  1.23188020e+00  8.01688421e-01]]W_2: [[-0.15407588 -0.34138474][-1.08699826  1.29461044][-0.78768133  0.88276975][-0.31945927  0.72302237]]

在神经网络过程中最开始的参数本质上也是一个随机数。在神经网络最开始的部分后面参数学习是通过梯度下降来进行学习的,但最早期可以采用随机数,这个随机数是 normal 的方法,normal 就是正态分布。我们是在 0 附近做了一个很小的随机数。

有两层神经元 W_1 和 W_2,如果要加非线性特征可以用 relu,来定义一下:

# 当 x<0 时,结果 = 0,x >= 0 时,结果 = x
def relu(x):return (abs(x)+x) / 2

relu 的计算方式就是 x 加上 abs(x),绝对值,然后再除以2。如果 x 大于 0 它就等于 x,如果小于 0 它就等于 0,这就是 relu 的函数定义。

GCN 这一层的计算逻辑,D_hat 的 -1 次方,其实就是一个倒数的概念。然后乘上 A,A 是邻接矩阵,X 是输入值,W 是权重系数。乘完以后,前面加一层 relu。

这就是 GCN 层的一个提取,同时又加了一个激活函数。现在我来问问大家,这一部分咱们是用了第几种的拉普拉斯算子?其实就是我上一节课中讲的第二种算子,写出来大家回顾一下:

L r w = D − 1 A \begin{align*} L^{rw} = D^{-1}A \end{align*} Lrw=D1A

实际上逻辑也一样,你也可以用第三种的,都是一样。

把 GCN 层定义下来以后,现在是做了两层的 GCN。最开始的原始数据就输个对角线,第一层的输出结果就是 H_1,把它作为下一层的输入,然后得到了第二层的结果 H_2。H_2 输出就不做其他操作,就把它当成 output 进行输出就可以了。

以上就是 GCN 的一个特征提取,后面咱们一起来看一看,下面其实都是去画一张图,把特征提取的结果通过一种转化的形式给他画一张图,详细的可以去看我上传的源代码。

# 绘制 output,节点 GCN Embedding 可视化
def plot_node(output, title):for i in range(len(nodes)):node_name = nodes[i]value = G.nodes[node_name]['value']plt.scatter(np.array(output)[i,0],np.array(output)[i,1] ,label=str(i), color=getValue(value), alpha=0.5, s=250)plt.text(np.array(output)[i,0],np.array(output)[i,1] ,i, horizontalalignment='center',verticalalignment='center', fontdict={'color':'black'})plt.title(title)plt.show()plot_node(output, 'Graph Embedding')

20240227143025

之前的代码中,咱们是做了 relu 这部分的激活函数,其实我还做了一份没有 relu 的代码,一样把它可视化出来:

20240227143031

我们来看两种方式,放到二维平面上面,relu 的这个特征提取的好吗?提取得好不好是看后续方不方便做分类任务,如果都挤在一起这个分类就不一定好做了对吧?不带 relu 的特征提取似乎是更理想一些,所以从这个结论上来去看,我们并没有学习,只是用随机数来进行了一个计算。第二,也没有加 relu,GCN的特征提取能力已经很强大了。

所以,其实 GCN 本身的特征提取能力就还不错,而且我们也是拿随机数来进行特征提取,特征提取能力还是比较强大的。以上就把 GCN 的算子用于神经网络的计算,而整个的神经网络就是这样的一套逻辑。

特征的好坏的评价标准是用于后续任务来去做衡量的,如果它分布的比较开那后续可能就比较好计算了。真正写项目的时候要不要加 relu 呢?刚才那个数据集比较简单,也才115支球队,所以不加 relu 是OK的,加了反而效果可能不好。那有些时候还是要试的,有的时候如果数据集比较复杂,加了 relu 效果会更好一点。

GCN 的这套逻辑其实并不是特别复杂,就是在神经网络上面对图做了一个特征提取。它的本质就是提取邻居的特征,再加上自己的特征,方便后续做特征提取的计算,同时又做了一些降维的处理。

那本节课只是拿美国大学生足球队的这个例子初步的来了解一下 GCN 的整个过程和逻辑,之前咱们也用过这个数据,大家可以自行去对比一下。

下一节课,咱们来看一个实际的项目。

这篇关于34. BI - 美国大学生足球队的 GCN 案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931404

相关文章

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动

六个案例搞懂mysql间隙锁

《六个案例搞懂mysql间隙锁》MySQL中的间隙是指索引中两个索引键之间的空间,间隙锁用于防止范围查询期间的幻读,本文主要介绍了六个案例搞懂mysql间隙锁,具有一定的参考价值,感兴趣的可以了解一下... 目录概念解释间隙锁详解间隙锁触发条件间隙锁加锁规则案例演示案例一:唯一索引等值锁定存在的数据案例二:

MySQL 表的内外连接案例详解

《MySQL表的内外连接案例详解》本文给大家介绍MySQL表的内外连接,结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录表的内外连接(重点)内连接外连接表的内外连接(重点)内连接内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red