面试集中营—场景面试题A

2024-04-24 09:20

本文主要是介绍面试集中营—场景面试题A,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、线上几百万的消息积压如何处理?

1、第一步我们要首先确定是什么导致的消息积压,基本上三个原因

  •   消费者处理消息速度慢;
  •   生产者生产消息速度太快;
  •   消息处理流程异常导致大量重试;

       线上消息积压第一步先看日志,是否在消费端出现了系统异常,系统异常有可能是磁盘满了,挂载盘故障了,网络不稳定或者有黑客入侵植入了其他程序侵占了系统资源等等。

       系统异常排除,就通过日志查看是否存在业务异常,是否有大量的报错信息,如果存在那么应该是代码的问题,此时就要快速修复问题,然后上线。

       如果不是代码的问题,那么就要考虑当前消费线程的执行时间是否过长,每次消费的时间太长也会造成消息的积压,通过各种工具可以检测到消费的时长,如果很长那么也需要优化代码。

       优化代码毕竟需要时间,此时就需要临时增加消费端的实例数量,或者暂时关闭或者降级生产者的部分功能(比如暂停批量导入,定时同步等),同时时刻关注积压消息的数量。

       最后在有能力或者有可能得情况下,通过调整MQ的参数来提升性能,当然对于很多公司是直接使用的云服务的情况下,可以不考虑这块儿。

二、如何不停机进行数据的迁移?

       这里有两个要求,一个是数据迁移,另一个是不停机。这里我们假设是从A库迁移到B库。

       1、应该设定一个时间节点,比如2024年1月1日,先把这个事件点之前的数据全部通过数据迁移的方式迁移到B库中。

      2、要不停机,就必须有一段时间是双写,在2024年1月1日以后的,就要设置双写逻辑,新写入的数据在A、B两个库进行双写。

       3、此时再启动一个程序做数据对比和同步的工作,就是把A库和B库的每条数据进行比对,并对B库进行更新。

       4、稳定运行一段时间后,先把读请求切换到新库中,最后把写请求也切换到新库中。

三、大量数据批量过期通知

       这类问题一般是比如我有200万的注册用户,或者会员用户,到期时间不同,那么如何设计能提前一天通知用户会员到期了呢?

       这里要区分是一个点,如果是每天零点通知一次,那么可以通过定时任务轮询的方式,把今天要到期的用户都查出来,然后统一发送邮件或者短信等等;

      如果不是定时推送,而是根据过期时间推送,这就变成了延时任务的实现,一般可以使用redis的键过期监听或者rocketmq的延时任务来实现。

四、在2G大小的文件中,快速找出高频Top100的单词

        2G大小的文件如果一次性加载到内存中,估计面试就可以回家等通知了。我们必须要使用分治法。

        所以第一步一定是分割,分割成多少呢,不用太纠结,1MB,512K都可以。比如1MB,那么2GB的文件就会被分割成2048个小文件。

        分割之后,第二步就是统计,统计每个文件中,每个单词的出现的次数。这里可以使用一个2048大小的hash数组。数组的每一个index对应其中一个文件。

        最后一步就是提取,只要是什么top100,top100,我们就采用堆这个数据类型,用容量为100的小顶堆。

        具体代码可以参考下面这篇文章:

在 2G 大小的文件中,找出高频 top100 的单词_统计100个高频单词的代码、-CSDN博客

五、对接第三方接口需要注意什么?

        这个问题就比较灵活了,但是一般可以从如下几个方面来表达。

        1、安全性问题:接口是https的吗?是否有比如sign校验,或者数据加密等操作。

        2、稳定性问题:接口是否稳定,可承受的最大并发是多少。

        3、经济性问题:接口调用一次多少钱,有没有最大调用限制。

六、单表数据量大的时候,影响查询效率的都有哪些?

         1、磁盘IO,使用

         2、索引失效,有坑你是

         3、数据分页,数据分页要占用大量的CPU资源

         4、锁竞争,同时读写操作,会产生

         5、数量大就要更大的内存来缓存

七、如何考虑分库分表?

        首先这个问题应该问的是mysql,如果是oracle,单库oracle的单表存储一亿条数据,在做好了分区的情况下,查询的性能也是可以保障的。

      什么情况下需要分库分表

        1、在分布式的场景下,使用微服务构建的后台系统,在有条件的情况可以先分库,尽量在业务逻辑拆分的情况下,数据库也是拆分的。这样单个微服务在上线维护的时候很便利不会影响到其他的微服务;

         2、影响数据库性能的主要有几个方面:

         一个是网络IO,当请求量很大,单个数据库无法招架的时候,不管你数据量级是多少,哪怕就几万的数据也得考虑分库;

         第二就是数据量级,阿里的数据专家建议单表的存储不要超过500万条,这里是基于数据库的性能,查询的优化和索引的性能,还有数据备份与恢复的总和考量得出的,我们可以根据自身的系统情况定一个标准,超过了数据量级就需要考虑分表;

         3、能不切分尽量不要切分

         在很多的场景下, 只需要做读写分离就可以满足大部分的需求了,不需要一开始就进行分库分表的操作,第一提升了业务的复杂度和维度的难度,第二还增加了硬件的开销。

      分表方式

         根据上一个问题的回答,我们可以总结出分表的几种方式

        1、垂直分表:这主要是考虑到单行字段过多或者单字段存储过大,比如存在blob字段,大文本字段,甚至有些二进制字段等等,此时可以对单表的字段进行拆分,将一张表拆分成主表,副表,副表2等,大部分的查询只需要针对主表即可;

        2、水平拆分:这就主要是考虑单表的性能,一般出现在单表数据量超过百万的情况下。此时就要按记录(行)分成多张表,分完后结构仍相同。水平拆分有一定的拆分规则,常见的规则如下:

        a、主键自增分表,前100万条放在表1,每增加100万条数据就增加一张表,这主要适用于类似日志的查询,或者只需要查询近一个月数据这样的场景;

        b、主键取模分表,这就是完全的离散分表,如果分成两个表,那么每个表的主键自增步长都设置为2,这种分表模式也是常见的分表,主要是为了应对大数据量的查询,可以把查询压力分散到不同的表中(或者库中)。

       c、按业务模型分表,比如电商经常会根据user_id来进行分表,这有一个好处,就是对同一个用户的查询永远是单表查询。但是也会造成数据表的数据不平衡,因为很有可能某些用户下单量大,某些用户下单量小。

       d、按时间分表:这种也常见,对于某些日志的存储,业务上就需要按照月份进行统计或者查询,那么按照时间分表就很适合。

    分库分表引发的问题  

问题问题描述解决方法
事务一致性跨库、表的分布式事务问题比如数据库拆分后,订单和库存在两个库中,一个下单减库存的操作,就涉及跨库事务。分布式事务中间件,实现 TCC 等事务模型;也可以使用基于本地消息表的分布式事务实现。
跨节点关联查询、分页、排序函数等查询的数据存在于多表、多库之间,SQL无法正常执行

1)利用中间件比如Mycat、ShardingSphere

2)  把关联数据放在同一个库中,避免夸库查询

3)把需要夸库查询的数据塞入ES中

主键避重分布式id问题uuid、雪花算法、数据库维护区间分配等

    分库分表中间件

分库分表中间件优点缺点性质
mycat独立部署,使用不需要修改代码;性能高,JDBC 直连数据库,无需二次转发配置比较复杂,分布式事务还需要做一些配置代理模式
Sharding-JDBC化分库分表之后数据相关操作,它一个轻量级的Java框架,是增强版的JDBC驱动,以jar包的形式提供引入非常简单,适用于很多ORM框架以及数据库连接池

嵌入式,要修改代码;

仅支持java

jar包,JDBC层
ShardingSphere由 Sharding-JDBC、Sharding-Proxy 和 Sharding-Sidecar 这三款相互独立的产品组成支持多种语言代理模式、JDBC层

        蘑菇街的TSharding、携程开源的Ctrip-DAL和Sharding-JDBC相似,都是对JDBC驱动的扩展,就不单独列出来了。

这篇关于面试集中营—场景面试题A的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931361

相关文章

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

荣耀嵌入式面试题及参考答案

在项目中是否有使用过实时操作系统? 在我参与的项目中,有使用过实时操作系统。实时操作系统(RTOS)在对时间要求严格的应用场景中具有重要作用。我曾参与的一个工业自动化控制项目就采用了实时操作系统。在这个项目中,需要对多个传感器的数据进行实时采集和处理,并根据采集到的数据及时控制执行机构的动作。实时操作系统能够提供确定性的响应时间,确保关键任务在规定的时间内完成。 使用实时操作系统的

一些其他面试题

阿里二面:那你来说说定时任务?单机、分布式、调度框架下的定时任务实现是怎么完成的?懵了。。_哔哩哔哩_bilibili 1.定时算法 累加,第二层每一个格子是第一层的总时间400 ms= 20 * 20ms 2.MQ消息丢失 阿里二面:高并发场景下引进消息队列有什么问题?如何保证消息只被消费一次?真是捏了一把汗。。_哔哩哔哩_bilibili 发送消息失败

zookeeper相关面试题

zk的数据同步原理?zk的集群会出现脑裂的问题吗?zk的watch机制实现原理?zk是如何保证一致性的?zk的快速选举leader原理?zk的典型应用场景zk中一个客户端修改了数据之后,其他客户端能够马上获取到最新的数据吗?zk对事物的支持? 1. zk的数据同步原理? zk的数据同步过程中,通过以下三个参数来选择对应的数据同步方式 peerLastZxid:Learner服务器(Follo

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

java常用面试题-基础知识分享

什么是Java? Java是一种高级编程语言,旨在提供跨平台的解决方案。它是一种面向对象的语言,具有简单、结构化、可移植、可靠、安全等特点。 Java的主要特点是什么? Java的主要特点包括: 简单性:Java的语法相对简单,易于学习和使用。面向对象:Java是一种完全面向对象的语言,支持封装、继承和多态。跨平台性:Java的程序可以在不同的操作系统上运行,称为"Write once,

java面试常见问题之Hibernate总结

1  Hibernate的检索方式 Ø  导航对象图检索(根据已经加载的对象,导航到其他对象。) Ø  OID检索(按照对象的OID来检索对象。) Ø  HQL检索(使用面向对象的HQL查询语言。) Ø  QBC检索(使用QBC(Qurey By Criteria)API来检索对象。 QBC/QBE离线/在线) Ø  本地SQL检索(使用本地数据库的SQL查询语句。) 包括Hibern

贝壳面试:什么是回表?什么是索引下推?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50+)中,最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题: 1.谈谈你对MySQL 索引下推 的认识? 2.在MySQL中,索引下推 是如何实现的?请简述其工作原理。 3、说说什么是 回表,什么是 索引下推 ? 最近有小伙伴在面试 贝壳、soul,又遇到了相关的