LLama的激活函数SwiGLU 解释

2024-04-24 09:04

本文主要是介绍LLama的激活函数SwiGLU 解释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

Swish激活函数

1. Swish函数公式

LLaMA模型中的激活函数

1. SwiGLU激活函数

2. SwiGLU激活函数的表达式

3. SwiGLU激活函数的优势


Swish激活函数

Swish是一种激活函数,其计算公式如下:

1. Swish函数公式

Swish(x) = x * sigmoid(x)

其中,sigmoid(x)是sigmoid函数,计算公式为:

sigmoid(x) = 1 / (1 + exp(-x))

Swish函数结合了线性函数和非线性函数的特点,能够自适应地调整激活函数的形状,因此在某些深度学习模型中,Swish函数的表现优于常见的ReLU函数。

LLaMA模型中的激活函数

在LLaMA模型中,使用的激活函数是SwiGLU[1][2][3]。

1. SwiGLU激活函数

SwiGLU是LLaMA模型在前馈神经网络(FFN)阶段使用的激活函数[2:1]。它取代了ReLU非线性函数,以提高模型的性能[3:1]。

2. SwiGLU激活函数的表达式

SwiGLU是Gated Linear Units(GLU)激活函数的一种变体,其公式为:

SwiGLU(x,W, V, b, c) = Swish_1(xW + b) ⊗ (xV + c)

其中,Swish_β(x) = x σ(β x),σ为sigmoid函数,⊗为逐元素乘[1][2][3]。

3. SwiGLU激活函数的优势

SwiGLU的优势主要体现在以下几个方面:

3.1 提升性能:SwiGLU被应用于Transformer架构中的前馈神经网络(FFN)层,用于增强性能[1:1][2:1][3:1]。

3.2 可微性:SwiGLU是处处可微的非线性函数[1:2]。

3.3 自适应性:GLU是一种类似于长短期记忆网络(LSTM)带有门机制的网络结构,通过门机制控制信息通过的比例,来让模型自适应地选择哪些单词和特征对预测下一个词有帮助[3:2]。

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import normdef gelu(x):return x * norm.cdf(x)def relu(x):return np.maximum(0, x)def swish(x, beta=1):return x * (1 / (1 + np.exp(-beta * x)))def swiglu(x, W, V, b, c):return swish(x*W + b) * (x*V + c)x_values = np.linspace(-5, 5, 500)
gelu_values = gelu(x_values)
relu_values = relu(x_values)
swish_values = swish(x_values)
swish_values2 = swish(x_values, beta=0.5)
swiglu_values = swiglu(x_values, 1, 1, 0, 0) # Here you need to set the parameters W, V, b, and c according to your needsplt.plot(x_values, gelu_values, label='GELU')
plt.plot(x_values, relu_values, label='ReLU')
plt.plot(x_values, swish_values, label='Swish')
plt.plot(x_values, swish_values2, label='Swish (beta=0.5)')
plt.plot(x_values, swiglu_values, label='SwiGLU')
plt.title("GELU, ReLU, Swish, and SwiGLU Activation Functions")
plt.xlabel("x")
plt.ylabel("Activation")
plt.grid()
plt.legend()
plt.show()

  1. 大模型基础|激活函数|从ReLU 到SwiGLU - 知乎

  2. 为什么大型语言模型都在使用 SwiGLU 作为激活函数? - 腾讯云

  3. 大模型系列:SwiGLU激活函数与GLU门控线性单元原理解析


  1. LLaMA:Open and Efficient Foundation Models

  2. llama2介绍(模型结构+参数计算)

  3. LLaMA Explained | Papers With Code

这篇关于LLama的激活函数SwiGLU 解释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931318

相关文章

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)