【Linux-14】进程地址空间&虚拟空间&页表——原理&知识点详解

本文主要是介绍【Linux-14】进程地址空间&虚拟空间&页表——原理&知识点详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

大家好吖,欢迎来到 YY 滴 系列 ,热烈欢迎! 本章主要内容面向接触过Linux的老铁
主要内容含:
在这里插入图片描述

欢迎订阅 YY滴C++专栏!更多干货持续更新!以下是传送门!

  • YY的《C++》专栏
  • YY的《C++11》专栏
  • YY的《Linux》专栏
  • YY的《数据结构》专栏
  • YY的《C语言基础》专栏
  • YY的《初学者易错点》专栏
  • YY的《小小知识点》专栏
  • YY的《单片机期末速过》专栏
  • YY的《C++期末速过》专栏
  • YY的《单片机》专栏
  • YY的《STM32》专栏
  • YY的《数据库》专栏
  • YY的《数据库原理》专栏

目录

  • 一.什么是进程地址空间?
    • 1.进程地址空间基本概念
    • 2.mm_struct 基本概念
    • 3.mm_struct/进程地址空间 实现“区域划分”的原理
  • 二.什么是页表?
    • 1.页表基本概念
    • 2.进程是如何和“页表”进行联系?
    • 3.每个进程都有页表,页表在“进程切换”如何跟踪
  • 三.地址空间&页表的作用机理
    • 1.地址空间&页表的基本原理
    • 2.【页表实验1】探究为什么一对父子进程,同样虚拟地址,读取数据不同?(OS对页表的调整)
    • 3.【页表实验2】为什么可执行程序中有大量代码和数据,加载到内存任意位置都可以,不用考虑顺序位置(页表映射功能)
    • 4.【页表实验3】为什么字符常量区不可被修改?它曾经是如何被修改的?(页表的权限控制功能)
    • 5.【页表实验4】一个游戏的大小远比内存大,他在内存中如何加载呢?(页表如何实现linux挂起状态)
    • 6.【页表实验5】缺页中断(进程地址空间建立“进程管理”与“内存管理”的联系)【全流程配图详解】(重点)

一.什么是进程地址空间?

1.进程地址空间基本概念

  1. 每一个 进程 运行之后,都会有一个进程地址空间 的存在
  2. 进程地址空间是操作系统OS 给进程花的大饼 欺骗进程他有足够的空间用——使每个进程都认为自己独占系统内存资源。(即虚拟空间)
  3. 结论:进程地址空间并不是物理内存,而是 虚拟内存 的一部分(虚拟地址,不具备存储能力)
  • 进程地址空间本质上是一种 抽象概念 ,用于描述进程如何看待和使用内存。
  1. 每个进程都有自己的内存地址范围,这样就不会与其他进程发生冲突。进程地址空间通常被划分为几个部分,包括代码段、数据段、堆和栈等,每个部分都有其特定的用途。
    在这里插入图片描述

2.mm_struct 基本概念

  1. 进程地址空间需要被操作系统OS 管理 起来,每一个进程都有地址空间,需要 被先描述再组织 ,因此地址空间是一个内核的 数据结构(内核结构体) ,即我们接下来要提到的 mm_struct
  2. 先描述再组织原理博客:【Linux】程序员一定要了解的计算机管理理念——描述与组织(9)

3.mm_struct/进程地址空间 实现“区域划分”的原理

  1. mm_struct 及其实现区域划分的原理: 对一段线性空间设置start与end
  • 我们在这里举个例子:小胖和小花同学要对座位进行“区域划分”,我们 从计算机语言角度如何实现呢?
    在这里插入图片描述
  • 如下所示,我们通过将其 描述成结构体 对一段线性空间设置start与end,实现了区域划分
struct destop_area
{int total size;int xiaopang_start;int xiaopang_end;int xiaohua start;int xiaohua end;
}struct destop_area area={100,0,50,50,100};
  • 我们打开linux内核结构体源码,也可以找到证明
    在这里插入图片描述

二.什么是页表?

1.页表基本概念

  • 引入:进程地址空间即虚拟地址,不具备存储能力
  1. 因此操作系统OS会对每个进程维护一张 映射表 对应着虚拟地址和物理地址 ,这就是 页表
  2. 页表是一种特殊的数据结构,它位于系统空间的页表区
  3. 页表还具有 权限控制 的功能,可以通过设置页表项的 权限位,实现对内存的读、写、执行等操作的控制。
    在这里插入图片描述

2.进程是如何和“页表”进行联系?

  • 进程各种访问寻址的前提, 一定是它在cpu上运行
  • cpu上有个 特殊寄存器cr3 ,他会保存页表地址,物理地址(页表地址会保存在进程的上下文当中)
    在这里插入图片描述

3.每个进程都有页表,页表在“进程切换”如何跟踪

根据第二小点内容:

  • 答: 经过cpu后,页表地址加载到上下文中保存好, 一起切换
  • 原理:进程切换时,地址也会被保存。

三.地址空间&页表的作用机理

1.地址空间&页表的基本原理

  • 如图:
  • 页表的主要作用是将虚拟地址空间映射到物理内存空间,实现虚拟地址到物理地址的转换。
    在这里插入图片描述

2.【页表实验1】探究为什么一对父子进程,同样虚拟地址,读取数据不同?(OS对页表的调整)

  • 我们经过fork,子进程经过写时拷贝会将页表 完整拷贝 下来一份
    (写时拷贝博客:【C++】STL容器——【深浅拷贝】与【写时拷贝】对比详解(拷贝构造)(10))
  • 因为 进程具有独立性 ,我们进行写入操作时,我们无法通过子进程修改父进程(对应同一块物理内存)
    在这里插入图片描述
  • 于是,操作系统会单独给子进程开辟一块新的物理地址
    在这里插入图片描述

3.【页表实验2】为什么可执行程序中有大量代码和数据,加载到内存任意位置都可以,不用考虑顺序位置(页表映射功能)

  • 答:地址空间,以无序变有序——是加载到内存任意位置都可以,不用考虑顺序位置, 因为都会被页表映射
  • 【减小内存管理成本,没有页表每次都要变化pcb】
  • 分析:进程地址空间, 让进程以统一的视角看待内存
  • 一个进程,可以通过地址空间+页表可以将 乱序/乱序 的内存数据,变成 有序 ,分门别类的规划好!在这里插入图片描述

4.【页表实验3】为什么字符常量区不可被修改?它曾经是如何被修改的?(页表的权限控制功能)

  • 我们运行下面所示程序,程序会崩溃
int main()
{char *str= “hello Linux”;   //常量区曾经是如何被修改的?*str= 'H';   //常量区不可被修改return 0;
}
  • 核心原理:页表还具有 权限控制 的功能,可以通过设置页表项的 权限位,实现对内存的读、写、执行等操作的控制。
    在这里插入图片描述

问:为什么程序会崩溃?

  • 答:语言程度上:字符常量区不可被修改
  • 答:进程地址空间上: 页表权限设置 只读 ,所以不可被修改

问:曾经又是如何被加载的?

  • 答:进程地址空间上: 页表权限设置 可读写 ,所以可以被修改

5.【页表实验4】一个游戏的大小远比内存大,他在内存中如何加载呢?(页表如何实现linux挂起状态)

  • 系统并不需要全部将其加载到内存中,加载一部分/不加载,需要时加载
  • 其中涉及到挂起状态

页表如何实现linux挂起状态?

  • 页表中有一个字段, 标志内存是否要分配空间 && 有内容
  • 例如:00 01 11 10 二进制形式来表示【是否分配&& 有内容】在这里插入图片描述
  • 页表实现linux挂起状态
  • 把原来的11状态变成00状态
    在这里插入图片描述

6.【页表实验5】缺页中断(进程地址空间建立“进程管理”与“内存管理”的联系)【全流程配图详解】(重点)

全流程讲解:

  1. 当前有个进程开始访问,通过cpu得到了页表的地址,访问页表,想找到物理地址
  2. 此时页表并没有物理地址,属于缺页;于是进入暂停状态
  • 假设此时状态为下图
    在这里插入图片描述
  1. 这时操作系统就把磁盘中的程序加载到内存中,并把物理地址填入缺失的页中
    在这里插入图片描述
  2. 此时属于"已分配(物理地址)"状态,标志位置1
    在这里插入图片描述
  • 结论:进程地址空间建立进程管理与内存管理的联系在这里插入图片描述

这篇关于【Linux-14】进程地址空间&虚拟空间&页表——原理&知识点详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931188

相关文章

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为