吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.6-1.8

本文主要是介绍吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.6-1.8,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 第一门课:第二门课 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)
    • 第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)
      • 1.6 dropout 正则化(Dropout Regularization)

第一门课:第二门课 改善深层神经网络:超参数调试、正 则 化 以 及 优 化 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)

第一周:深度学习的 实践层面 (Practical aspects of Deep Learning)

1.6 dropout 正则化(Dropout Regularization)

除了𝐿2正则化,还有一个非常实用的正则化方法——“Dropout(随机失活)”,我们来看看它的工作原理。
在这里插入图片描述
假设你在训练上图这样的神经网络,它存在过拟合,这就是 dropout 所要处理的,我们复制这个神经网络,dropout 会遍历网络的每一层,并设置消除神经网络中节点的概率。假设网络中的每一层,每个节点都以抛硬币的方式设置概率,每个节点得以保留和消除的概率都是 0.5,设置完节点概率,我们会消除一些节点,然后删除掉从该节点进出的连线,最后得到一个节点更少,规模更小的网络,然后用 backprop 方法进行训练。

在这里插入图片描述
这是网络节点精简后的一个样本,对于其它样本,我们照旧以抛硬币的方式设置概率,保留一类节点集合,删除其它类型的节点集合。对于每个训练样本,我们都将采用一个精简后神经网络来训练它,这种方法似乎有点怪,单纯遍历节点,编码也是随机的,可它真的有效。不过可想而知,我们针对每个训练样本训练规模极小的网络,最后你可能会认识到为什么要正则化网络,因为我们在训练极小的网络。
在这里插入图片描述

如何实施 dropout 呢?方法有几种,接下来我要讲的是最常用的方法,即 inverted dropout(反向随机失活),出于完整性考虑,我们用一个三层(𝑙 = 3)网络来举例说明。编码中会有很多涉及到 3 的地方。我只举例说明如何在某一层中实施 dropout。首先要定义向量𝑑,𝑑[3]表示一个三层的 dropout 向量:

d3 = np.random.rand(a3.shape[0],a3.shape[1])

然后看它是否小于某数,我们称之为 keep-prob,keep-prob 是一个具体数字,上个示例中它是 0.5,而本例中它是 0.8,它表示保留某个隐藏单元的概率,此处 keep-prob 等于 0.8,它意味着消除任意一个隐藏单元的概率是 0.2,它的作用就是生成随机矩阵,如果对 a [ 3 ] a^{[3]} a[3]进行
因子分解,效果也是一样的。 d [ 3 ] d^{[3]} d[3]是一个矩阵,每个样本和每个隐藏单元,其中 d [ 3 ] d^{[3]} d[3]中的对应值为 1 的概率都是 0.8,对应为 0 的概率是 0.2,随机数字小于 0.8。它等于 1 的概率是 0.8,等于 0 的概率是 0.2。

接下来要做的就是从第三层中获取激活函数,这里我们叫它 a [ 3 ] a^{[3]} a[3] a [ 3 ] a^{[3]} a[3]含有要计算的激活函数, a [ 3 ] a^{[3]} a[3]等于上面的 a [ 3 ] a^{[3]} a[3]乘以 d [ 3 ] d^{[3]} d[3],a3 =np.multiply(a3,d3),这里是元素相乘,也可写为𝑎3 ∗= 𝑑3,它的作用就是让 d [ 3 ] d^{[3]} d[3]中所有等于 0 的元素(输出),而各个元素等于 0 的概率只有 20%,乘法运算最终把 d [ 3 ] d^{[3]} d[3]中相应元素输出,即让 d [ 3 ] d^{[3]} d[3]中 0 元素与 a [ 3 ] a^{[3]} a[3]中相对元素归零。
在这里插入图片描述
如果用 python 实现该算法的话,𝑑[3]则是一个布尔型数组,值为 true 和 false,而不是1 和 0,乘法运算依然有效,python 会把 true 和 false 翻译为 1 和 0,大家可以用 python 尝试一下。
最后,我们向外扩展𝑎[3],用它除以 0.8,或者除以 keep-prob 参数。

𝑎3/= 𝑘𝑒𝑒𝑝 − 𝑝𝑟𝑜𝑏

下面我解释一下为什么要这么做,为方便起见,我们假设第三隐藏层上有 50 个单元或50 个神经元,在一维上𝑎[3]是 50,我们通过因子分解将它拆分成50 × 𝑚维的,保留和删除它们的概率分别为 80%和 20%,这意味着最后被删除或归零的单元平均有 10(50×20%=10)个,现在我们看下𝑧[4],𝑧[4] = 𝑤[4]𝑎[3] + 𝑏[4],我们的预期是,𝑎[3]减少 20%,也就是说𝑎[3]中有 20%的元素被归零,为了不影响𝑧[4]的期望值,我们需要用𝑤[4]𝑎[3]/0.8,它将会修正或弥补我们所需的那 20%,𝑎[3]的期望值不会变,划线部分就是所谓的 dropout 方法。

在这里插入图片描述

这篇关于吴恩达深度学习笔记:深度学习的 实践层面 (Practical aspects of Deep Learning)1.6-1.8的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930855

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机