本文主要是介绍2017.4-Jeff Donahue, Trevor Darrell-Adversarial feature learning-UCB-ICLR2017 阅读笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
2017.4-Jeff Donahue, Trevor Darrell-Adversarial feature learning-UCB-ICLR2017
- 本文创新点:提出 BiGANs,能够进行 inverse mapping (data => latent space)
- 在GAN 中引入 encoder,命名为 Bi-GAN, 将 discriminator 对 X 和 G(z) 的判别转化为对 (x, E(x)) 和 (G(z), z) 的判别。
- 推导证明了 BiGAN 最优的 E 和 G 是互逆的: E = G − 1 E=G^{-1} E=G−1
- 推导证明了 BiGAN 与 ℓ 0 \ell_0 ℓ0 loss 下的 autoencoder 是 closely related.
- 本文的 traning, hyper param. setting 与 evaluation 等,均沿用前人文献。
Abstract
- Target of the research
- Learn feature repre. for auxiliary problems where semantics are relevant.
- GAN
- cannot project: data => latent space
- This paper
- propose BiGANs
- ability of inverse mapping: data => latent space
- Result
- the resulting learned feature representation is useful for auxiliary supervised discrimination tasks
adversarial (minimax) objective
- GAN: min G max D V ( D , G ) \min_G \max_D V(D,G) minGmaxDV(D,G)
- BiGAN: min G , E max D V ( D , E , G ) \min_{G,E} \max_D V(D,E,G) minG,EmaxDV(D,E,G)
- optimize the Jensen-Shannon divergence between the joint dist. P E X P_{EX} PEX and P G Z P_{GZ} PGZ
这篇关于2017.4-Jeff Donahue, Trevor Darrell-Adversarial feature learning-UCB-ICLR2017 阅读笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!