【智能算法】回溯搜索算法(BSA)原理及实现

2024-04-23 18:20

本文主要是介绍【智能算法】回溯搜索算法(BSA)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2013年,P Civicioglu等人受到当前种群与历史种群之间的差分向量的引导启发,提出了回溯搜索算法(Backtracking Search Algorithm, BSA)。
在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

BSA通过当前种群与历史种群之间的差分向量的引导来执行搜索任务,主要分为三部分:筛选-I、交叉和变异和筛选-II

2.2算法过程

筛选-I

更新历史种群 Xoldt ,分为以下两步:
X o l d t = { X t , i f φ > θ X o l d t , o t h e r w i s e (1) \boldsymbol{X}_{\mathrm{old}}^t=\begin{cases}\boldsymbol{X}^t,&\mathrm{if~}\varphi{>}\theta\\\boldsymbol{X}_{\mathrm{old}}^t,&\mathrm{otherwise}&\end{cases}\tag{1} Xoldt={Xt,Xoldt,if φ>θotherwise(1)
其中, φ , θ \varphi,\theta φ,θ为随机数。接下来:
X o l d t = p e r m u t i n g ( X o l d t ) (2) \boldsymbol{X}_\mathrm{old}^t\mathrm{=permuting}{\left(\boldsymbol{X}_\mathrm{old}^t\right)}\tag{2} Xoldt=permuting(Xoldt)(2)
permuting 是一个随机改组函数,使得历史种群 Xold t 中包含的 N 个个体随机排序。

交叉和变异

变异操作由历史种群 Xold t 引导:
z i t = x i t + F × ( x o l d , i t − x i t ) (3) \boldsymbol{z}_i^t=\boldsymbol{x}_i^t+F\times\left(\boldsymbol{x}_{\mathrm{old},i}^t-\boldsymbol{x}_i^t\right)\tag{3} zit=xit+F×(xold,itxit)(3)
F 为缩放因子,表述为:
F = 3 × ξ (4) F{=}3{\times}\xi \tag{4} F=3×ξ(4)
交叉操作是由一个 N 行 D 列的二进制矩阵 M 来引导:
x i , j t + 1 = { x i , j t , i f M i , j = 1 z i , j t , i f M i , j = 0 (5) x_{i,j}^{t+1}=\begin{cases}x_{i,j}^t,\mathrm{if~}\boldsymbol{M}_{i,j}=1\\z_{i,j}^t,\mathrm{if~}\boldsymbol{M}_{i,j}=0\end{cases}\tag{5} xi,jt+1={xi,jt,if Mi,j=1zi,jt,if Mi,j=0(5)

筛选-II

为了加快收敛过程,执行:
x i t + 1 = { x i t , i f f ( x i t ) < f ( x i t + 1 ) x i t + 1 , o t h e r w i s e (6) \boldsymbol{x}_i^{t+1}=\begin{cases}\boldsymbol{x}_i^t,&\mathrm{if~}f(\boldsymbol{x}_i^t)<f(\boldsymbol{x}_i^{t+1})\\\boldsymbol{x}_i^{t+1},&\mathrm{otherwise}&\end{cases}\tag{6} xit+1={xit,xit+1,if f(xit)<f(xit+1)otherwise(6)

伪代码

在这里插入图片描述

3.结果展示

作者提供了拟合圆、图像聚类两个案例:

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Civicioglu P. Backtracking search optimization algorithm for numerical optimization problems[J]. Applied Mathematics and computation, 2013, 219(15): 8121-8144.

这篇关于【智能算法】回溯搜索算法(BSA)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/929550

相关文章

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Pydantic中model_validator的实现

《Pydantic中model_validator的实现》本文主要介绍了Pydantic中model_validator的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录引言基础知识创建 Pydantic 模型使用 model_validator 装饰器高级用法mo

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N