Python和R热释光动能朗伯W函数解析方程

2024-04-23 12:28

本文主要是介绍Python和R热释光动能朗伯W函数解析方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. Python和R计算和绘图:
    1. 🎯一陷阱一复合中心模型计算:🖊常微分方程求解器求解 | 🖊不同活化能和频率因子动力学参数下热释放光强度 | 🖊改变重捕获率 | 🖊数值解光热激发一阶动能微分方程 | 🖊模拟可变初始陷阱浓度的一阶峰和二阶峰 | 🖊数值计算寻找活化能 | 🖊绘制不同加热速率的辉光曲线 | 🖊加热速率法求活化能和频率因子 | 🖊数值求解和绘制一般动能解析方程 | 🖊朗伯W函数求解和绘制一般离子陷阱方程 | 🖊数值计算和绘制混合级动能微分方程。🎯辉光曲线反卷积数值计算:🖊光热激发一阶动能微分方程反卷积 | 🖊一般动能方程反卷积 | 🖊离域电子跃迁方程反卷积 | 🖊离域电子跃迁方程氧化铝热释光反卷积 |🖊混合级动能微分方程氧化铝热释光反卷积 | 🖊离域电子跃迁方程两个峰值辉光曲线数据反卷积 | 🖊一般动能方程两个峰值辉光曲线数据反卷积 | 🖊离域电子跃迁方程九峰值辉光曲线反卷积。
    2. 🎯量子隧道局域跃迁模型计算:🖊评估立方体中电子和受体之间距离的最近邻分布 | 🖊评估异常衰落周期结束时距离的分布 | 🖊数值计算评估基态隧道效应模型 | 🖊数值计算和绘制亨特利方程:基态隧道效应模型剩余电子 | 🖊数值评估同时基态隧道模型 | 🖊数值计算和绘制同时基态隧道模型自然界中同时照射和异常衰落 | 🖊模拟未衰落取样辉光曲线求和。🎯长石和磷灰石等材料的模型实验数据分析。
    3. 🎯等温释光信号模型:🖊模型数据分析 | 🎯离域电子跃迁光激发光模型:🖊模型数据分析 | 🎯其他模型

🍇Python朗伯W函数一阶时滞微分方程

延时系统是指在系统输入输入和结果输出之间存在显着时间延迟的系统,这种延迟可能是固有的或故意引入的。延时系统可以使用延迟微分方程进行建模。

假设以下系统包含时滞微分方程:
{ x ′ ( t ) = a x ( t ) + a d x ( t − h ) + b u ( t ) t > 0 x ( t ) = g ( t ) t ∈ [ − h , 0 ) x ( t ) = x 0 t = 0 \begin{cases}x^{\prime}(t)=a x(t)+a_d x(t-h)+b u(t) & t>0 \\ x(t)=g(t) & t \in[-h, 0) \\ x(t)=x_0 & t=0\end{cases} x(t)=ax(t)+adx(th)+bu(t)x(t)=g(t)x(t)=x0t>0t[h,0)t=0
其中,

  • x ( t ) x(t) x(t) 是未知函数
  • a r a d a_r a_d arad b b b 是标量常数 ∈ R \in R R
  • h h h 是常数 ∈ R + \in R ^{+} R+,因此严格为正数并表示延迟
  • g ( t ) g(t) g(t) 是一个函数,当时间变量 t t t 包含在区间 [ − h , 0 ) [-h, 0) [h,0) 中时,该函数提供 x ( t ) x(t) x(t) 的值
  • x ( 0 ) = x 0 x(0)=x_0 x(0)=x0 是柯西初始条件

根据论文,时滞微分方程的解如下:
x ( t ) = ∑ k = − ∞ + ∞ e s k t C k I + ∫ 0 t ∑ k = − ∞ + ∞ e s k ( t − η ) C k N b u ( η ) d η x(t)=\sum_{k=-\infty}^{+\infty} e^{s_k t} C_k^I+\int_0^t \sum_{k=-\infty}^{+\infty} e^{s_k(t-\eta)} C_k^N b u(\eta) d \eta x(t)=k=+esktCkI+0tk=+esk(tη)CkNbu(η)dη
其中,
C k I = x 0 + a d e − s k h ∫ 0 h e − s k t g ( t − h ) d t 1 + a d h e − s k h C_k^I=\frac{x_0+a_d e^{-s_k h} \int_0^h e^{-s_k t} g(t-h) d t}{1+a_d h e^{-s_k h}} CkI=1+adheskhx0+adeskh0hesktg(th)dt

C k N = 1 1 + a d h e − s k h C_k^N=\frac{1}{1+a_d h e^{-s_k h}} CkN=1+adheskh1

s k = 1 h W k ( a d h e − a h ) + a s_k=\frac{1}{h} W_k\left(a_d h e^{-a h}\right)+a sk=h1Wk(adheah)+a

其中 W k W_k Wk 是索引 k k k 的朗伯函数 W W W。朗伯函数 W W W 是在随着索引 k k k 变化而获得的复数域中定义的函数族。

在开始Python实现之前需要注意两点:

  • 函数W不能用初等函数表示,因此我们将使用SciPy提供的数值实现scipy.special.lambertw
  • 对于积分的计算,我们将始终使用 SciPy,特别是 scipy.integrate.quad,但请记住,我们在复数域中操作,我们必须小心分别对实部和虚部进行积分,因为 scipy.integrate.quad 不支持复数域中的积分。
import numpy as np
from scipy import real, imag
from scipy.integrate import quad
from scipy.special import lambertw
import matplotlib.pyplot as plt

本示例中使用的设置是:

t_begin=0.
t_end=10.
t_nsamples=101
t_space, t_step = np.linspace(t_begin, t_end, t_nsamples, retstep=True)k_range=9
a = 0.5
ad = -2.5
b = 1.75
h = 1.
g = lambda t : 1. - 0.1 * t
u = lambda t : 0.2 * t
x0 = 1.5

然后,

sk_fn = lambda k :  (1./h) * lambertw(ad * h * np.exp(-a * h), k) + a
SK = [sk_fn(k) for k in range (-k_range, k_range+1)]

执行该片段后。 x ( t ) x(t) x(t)的实现在Python中如下:

def x(t):def integrand_for_cki(t_, sk):return np.exp(-sk * t_) * g(t_ - h)def integral_for_cki(sk):def real_func(t_, sk):return np.real(integrand_for_cki(t_, sk))def imag_func(t_, sk):return np.imag(integrand_for_cki(t_, sk))real_integral = quad(real_func, 0., h, args=(sk))imag_integral = quad(imag_func, 0., h, args=(sk))return real_integral[0] + 1.j*imag_integral[0]def integrand_for_x_t(eta):tot = 0.for k in range (-k_range, k_range+1):sk = SK[k + k_range]ck_denom = (1. + ad * h * np.exp(-sk * h))ckn = 1. / ck_denomtot += np.exp(sk * (t - eta)) * ckn * b * u(eta)return totdef integral_for_x_t():def real_func(eta):return np.real(integrand_for_x_t(eta))def imag_func(eta):return np.imag(integrand_for_x_t(eta))real_integral = quad(real_func, 0., t)imag_integral = quad(imag_func, 0., t)return real_integral[0] + 1.j*imag_integral[0]tot = 0.for k in range (-k_range, k_range+1):sk = SK[k + k_range]int_for_cki = integral_for_cki(sk)ck_denom = (1. + ad * h * np.exp(-sk * h))cki = (x0 + ad * np.exp(-sk * h) * int_for_cki) / ck_denomtot += np.exp(sk * t) * ckitot += integral_for_x_t()return tot

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python和R热释光动能朗伯W函数解析方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/928786

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理