Python和R热释光动能朗伯W函数解析方程

2024-04-23 12:28

本文主要是介绍Python和R热释光动能朗伯W函数解析方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. Python和R计算和绘图:
    1. 🎯一陷阱一复合中心模型计算:🖊常微分方程求解器求解 | 🖊不同活化能和频率因子动力学参数下热释放光强度 | 🖊改变重捕获率 | 🖊数值解光热激发一阶动能微分方程 | 🖊模拟可变初始陷阱浓度的一阶峰和二阶峰 | 🖊数值计算寻找活化能 | 🖊绘制不同加热速率的辉光曲线 | 🖊加热速率法求活化能和频率因子 | 🖊数值求解和绘制一般动能解析方程 | 🖊朗伯W函数求解和绘制一般离子陷阱方程 | 🖊数值计算和绘制混合级动能微分方程。🎯辉光曲线反卷积数值计算:🖊光热激发一阶动能微分方程反卷积 | 🖊一般动能方程反卷积 | 🖊离域电子跃迁方程反卷积 | 🖊离域电子跃迁方程氧化铝热释光反卷积 |🖊混合级动能微分方程氧化铝热释光反卷积 | 🖊离域电子跃迁方程两个峰值辉光曲线数据反卷积 | 🖊一般动能方程两个峰值辉光曲线数据反卷积 | 🖊离域电子跃迁方程九峰值辉光曲线反卷积。
    2. 🎯量子隧道局域跃迁模型计算:🖊评估立方体中电子和受体之间距离的最近邻分布 | 🖊评估异常衰落周期结束时距离的分布 | 🖊数值计算评估基态隧道效应模型 | 🖊数值计算和绘制亨特利方程:基态隧道效应模型剩余电子 | 🖊数值评估同时基态隧道模型 | 🖊数值计算和绘制同时基态隧道模型自然界中同时照射和异常衰落 | 🖊模拟未衰落取样辉光曲线求和。🎯长石和磷灰石等材料的模型实验数据分析。
    3. 🎯等温释光信号模型:🖊模型数据分析 | 🎯离域电子跃迁光激发光模型:🖊模型数据分析 | 🎯其他模型

🍇Python朗伯W函数一阶时滞微分方程

延时系统是指在系统输入输入和结果输出之间存在显着时间延迟的系统,这种延迟可能是固有的或故意引入的。延时系统可以使用延迟微分方程进行建模。

假设以下系统包含时滞微分方程:
{ x ′ ( t ) = a x ( t ) + a d x ( t − h ) + b u ( t ) t > 0 x ( t ) = g ( t ) t ∈ [ − h , 0 ) x ( t ) = x 0 t = 0 \begin{cases}x^{\prime}(t)=a x(t)+a_d x(t-h)+b u(t) & t>0 \\ x(t)=g(t) & t \in[-h, 0) \\ x(t)=x_0 & t=0\end{cases} x(t)=ax(t)+adx(th)+bu(t)x(t)=g(t)x(t)=x0t>0t[h,0)t=0
其中,

  • x ( t ) x(t) x(t) 是未知函数
  • a r a d a_r a_d arad b b b 是标量常数 ∈ R \in R R
  • h h h 是常数 ∈ R + \in R ^{+} R+,因此严格为正数并表示延迟
  • g ( t ) g(t) g(t) 是一个函数,当时间变量 t t t 包含在区间 [ − h , 0 ) [-h, 0) [h,0) 中时,该函数提供 x ( t ) x(t) x(t) 的值
  • x ( 0 ) = x 0 x(0)=x_0 x(0)=x0 是柯西初始条件

根据论文,时滞微分方程的解如下:
x ( t ) = ∑ k = − ∞ + ∞ e s k t C k I + ∫ 0 t ∑ k = − ∞ + ∞ e s k ( t − η ) C k N b u ( η ) d η x(t)=\sum_{k=-\infty}^{+\infty} e^{s_k t} C_k^I+\int_0^t \sum_{k=-\infty}^{+\infty} e^{s_k(t-\eta)} C_k^N b u(\eta) d \eta x(t)=k=+esktCkI+0tk=+esk(tη)CkNbu(η)dη
其中,
C k I = x 0 + a d e − s k h ∫ 0 h e − s k t g ( t − h ) d t 1 + a d h e − s k h C_k^I=\frac{x_0+a_d e^{-s_k h} \int_0^h e^{-s_k t} g(t-h) d t}{1+a_d h e^{-s_k h}} CkI=1+adheskhx0+adeskh0hesktg(th)dt

C k N = 1 1 + a d h e − s k h C_k^N=\frac{1}{1+a_d h e^{-s_k h}} CkN=1+adheskh1

s k = 1 h W k ( a d h e − a h ) + a s_k=\frac{1}{h} W_k\left(a_d h e^{-a h}\right)+a sk=h1Wk(adheah)+a

其中 W k W_k Wk 是索引 k k k 的朗伯函数 W W W。朗伯函数 W W W 是在随着索引 k k k 变化而获得的复数域中定义的函数族。

在开始Python实现之前需要注意两点:

  • 函数W不能用初等函数表示,因此我们将使用SciPy提供的数值实现scipy.special.lambertw
  • 对于积分的计算,我们将始终使用 SciPy,特别是 scipy.integrate.quad,但请记住,我们在复数域中操作,我们必须小心分别对实部和虚部进行积分,因为 scipy.integrate.quad 不支持复数域中的积分。
import numpy as np
from scipy import real, imag
from scipy.integrate import quad
from scipy.special import lambertw
import matplotlib.pyplot as plt

本示例中使用的设置是:

t_begin=0.
t_end=10.
t_nsamples=101
t_space, t_step = np.linspace(t_begin, t_end, t_nsamples, retstep=True)k_range=9
a = 0.5
ad = -2.5
b = 1.75
h = 1.
g = lambda t : 1. - 0.1 * t
u = lambda t : 0.2 * t
x0 = 1.5

然后,

sk_fn = lambda k :  (1./h) * lambertw(ad * h * np.exp(-a * h), k) + a
SK = [sk_fn(k) for k in range (-k_range, k_range+1)]

执行该片段后。 x ( t ) x(t) x(t)的实现在Python中如下:

def x(t):def integrand_for_cki(t_, sk):return np.exp(-sk * t_) * g(t_ - h)def integral_for_cki(sk):def real_func(t_, sk):return np.real(integrand_for_cki(t_, sk))def imag_func(t_, sk):return np.imag(integrand_for_cki(t_, sk))real_integral = quad(real_func, 0., h, args=(sk))imag_integral = quad(imag_func, 0., h, args=(sk))return real_integral[0] + 1.j*imag_integral[0]def integrand_for_x_t(eta):tot = 0.for k in range (-k_range, k_range+1):sk = SK[k + k_range]ck_denom = (1. + ad * h * np.exp(-sk * h))ckn = 1. / ck_denomtot += np.exp(sk * (t - eta)) * ckn * b * u(eta)return totdef integral_for_x_t():def real_func(eta):return np.real(integrand_for_x_t(eta))def imag_func(eta):return np.imag(integrand_for_x_t(eta))real_integral = quad(real_func, 0., t)imag_integral = quad(imag_func, 0., t)return real_integral[0] + 1.j*imag_integral[0]tot = 0.for k in range (-k_range, k_range+1):sk = SK[k + k_range]int_for_cki = integral_for_cki(sk)ck_denom = (1. + ad * h * np.exp(-sk * h))cki = (x0 + ad * np.exp(-sk * h) * int_for_cki) / ck_denomtot += np.exp(sk * t) * ckitot += integral_for_x_t()return tot

参阅一:计算思维

参阅二:亚图跨际

这篇关于Python和R热释光动能朗伯W函数解析方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/928786

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、