python 数学+减治、下一个排列法、DFS回溯法实现:第 k 个排列【LeetCode 题目 60】

2024-04-23 09:04

本文主要是介绍python 数学+减治、下一个排列法、DFS回溯法实现:第 k 个排列【LeetCode 题目 60】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。
会一些的技术:数据分析、算法、SQL、大数据相关、python
欢迎加入社区:码上找工作
作者专栏每日更新:
LeetCode解锁1000题: 打怪升级之旅
python数据分析可视化:企业实战案例
备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给出集合 [1,2,3,...,n],其所有元素共有 n! 种排列。按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:

  • “123”
  • “132”
  • “213”
  • “231”
  • “312”
  • “321”

给定 nk,返回第 k 个排列。

输入格式
  • n:一个整数,表示集合的大小。
  • k:一个整数,表示所求的排列序号。
输出格式
  • 返回一个字符串,表示第 k 个排列。
示例 1
输入: n = 3, k = 3
输出: "213"
示例 2
输入: n = 4, k = 9
输出: "2314"

方法一:数学 + 减治法

解题步骤
  1. 计算阶乘:首先计算所有小于等于 n 的数字的阶乘,这有助于后续确定每位数字的位置。
  2. 确定每位数字:从最高位开始,根据阶乘数确定每一位在剩余数字中的位置。
  3. 更新 k 值:更新 kk 减去前面已确定位的组合数。
  4. 重复选择数字:直到所有位置都填满。
完整的规范代码
def getPermutation(n, k):"""使用数学方法和减治法获取第k个排列:param n: int, 集合的大小:param k: int, 排列的序号:return: str, 第k个排列"""factorial = [1] * nfor i in range(1, n):factorial[i] = factorial[i - 1] * ik -= 1  # 转换成索引answer = []numbers = list(range(1, n + 1))for i in range(1, n + 1):index = k // factorial[n - i]answer.append(str(numbers.pop(index)))k %= factorial[n - i]return ''.join(answer)# 示例调用
print(getPermutation(3, 3))  # 输出: "213"
print(getPermutation(4, 9))  # 输出: "2314"
算法分析
  • 时间复杂度:(O(n^2)),计算阶乘数组为 (O(n)),确定每一位数字为 (O(n^2))(因为每次都要从列表中删除元素)。
  • 空间复杂度:(O(n)),存储阶乘数组和数字列表。

方法二:下一个排列法

解题步骤
  1. 生成最小排列:首先生成 [1,2,...,n]
  2. 应用 next permutation:应用 k-1 次“下一个排列”算法得到第 k 个排列。
完整的规范代码
def getPermutation(n, k):"""使用next permutation方法获取第k个排列:param n: int, 集合的大小:param k: int, 排列的序号:return: str, 第k个排列"""def next_permutation(nums):i = j = len(nums) - 1while i > 0 and nums[i-1] >= nums[i]:i -= 1if i == 0:   # nums are in descending ordernums.reverse()returnk = i - 1    # find the last "ascending" positionwhile nums[j] <= nums[k]:j -= 1nums[k], nums[j] = nums[j], nums[k]  l, r = k+1, len(nums)-1  # reverse the second partwhile l < r:nums[l],nums[r] = nums[r], nums[l]l +=1; r -= 1nums = list(range(1, n + 1))for _ in range(k - 1):next_permutation(nums)return ''.join(map(str, nums))# 示例调用
print(getPermutation(3, 3))  # 输出: "213"
print(getPermutation(4, 9))  # 输出: "2314"
算法分析
  • 时间复杂度:(O(n \times k)),每次生成下一个排列需要 (O(n)) 时间。
  • 空间复杂度:(O(n)),存储数字列表。

方法三:DFS回溯法

解题步骤
  1. DFS遍历:使用深度优先搜索遍历所有可能的排列。
  2. 计数并返回:当遍历到第 k 个排列时立即返回。
完整的规范代码
def getPermutation(n, k):"""使用DFS回溯法获取第k个排列:param n: int, 集合的大小:param k: int, 排列的序号:return: str, 第k个排列"""def dfs(path):nonlocal countif len(path) == n:count += 1if count == k:return pathreturnfor number in range(1, n+1):if number in path:continueres = dfs(path + [number])if res:return rescount = 0result = dfs([])return ''.join(map(str, result)) if result else ""# 示例调用
print(getPermutation(3, 3))  # 输出: "213"
print(getPermutation(4, 9))  # 输出: "2314"
算法分析
  • 时间复杂度:(O(n!)),理论上需要遍历所有排列。
  • 空间复杂度:(O(n)),递归深度为 n

不同算法的优劣势对比

在这里插入图片描述

应用示例详解:密码生成系统

场景描述

在密码生成和密码管理软件中,经常需要生成复杂且难以预测的密码来增加安全性。使用“第 k 个排列”算法可以在预定义字符集上生成随机但确定的密码,适用于需要高安全性的应用场景,如在线银行、军事通信等。

方法:数学+减治法

技术选择
选择方法一(数学+减治法),因为它可以直接计算出第 k 个排列而无需生成所有排列,提高了生成效率和保密性。

实现步骤

  1. 选择字符集:定义一个字符集,例如包含大小写字母和数字 [1-9, a-z, A-Z]
  2. 计算阶乘:预先计算出所有小于字符集大小的阶乘,用于后续计算排列位置。
  3. 确定每位字符:根据阶乘和 k 值,快速确定每一位置上的字符,直接计算出第 k 个排列。
  4. 生成密码:将计算出的排列作为密码,提供给用户或用于加密应用。

代码实现

def getPermutation(characters, k):"""使用数学方法和减治法基于给定字符集生成密码:param characters: str, 字符集:param k: int, 指定的排列序号:return: str, 生成的密码(排列)"""n = len(characters)factorial = [1] * (n + 1)for i in range(2, n + 1):factorial[i] = factorial[i - 1] * ik -= 1  # 转换为基于0的索引answer = []numbers = list(characters)for i in range(1, n + 1):index = k // factorial[n - i]answer.append(numbers.pop(index))k %= factorial[n - i]return ''.join(answer)# 示例调用
chars = "123456789ABCDEF"
k = 9432
print(getPermutation(chars, k))  # 输出: 第9432个排列
应用优势
  • 效率高:直接计算第 k 个排列,无需枚举所有可能,适合实时密码生成需求。
  • 安全性强:密码的生成基于数学计算,没有明显的规律,安全性高。
  • 适用性广:可根据不同的字符集和需求灵活定制密码生成策略。

总结

通过在密码生成系统中应用“第 k 个排列”算法,开发者可以提供一种高效且安全的方式来生成复杂密码。此外,该算法的高计算效率和确定性也使其成为理想的选择,用于需要快速生成大量密码或密钥的场合,比如动态令牌生成、临时密码分配等。此方法不仅优化了密码生成过程,也极大提高了密码管理系统的整体安全性。

这篇关于python 数学+减治、下一个排列法、DFS回溯法实现:第 k 个排列【LeetCode 题目 60】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/928355

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核