Spring AI教程(二)Chat API之Prompts模板语法

2024-04-23 01:04

本文主要是介绍Spring AI教程(二)Chat API之Prompts模板语法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Prompts 模板语法

 上节我们介绍了提示词工程,并通过设定SystemMessage获得了一个会骂人的AI。而本节介绍的内容仍然与提示词有关。

 Spring AI为我们提供了提示词模板,允许我们通过一些模板,快速地动态生成提示词并发起提问。除此之外,我们还能使用Spring AI为我们提供的输出解析器将AI回复的内容解析为Bean对象。

5.1 PromptTemplate

PromptTemplate能够帮助我们创建结构化提示词,是Spring AI提示词工程中的关键组件,该类实现了三个接口:PromptTemplateStringActionsPromptTemplateActionsPromptTemplateMessageActions,这些接口的主要功能也有所不同:

  • PromptTemplateStringActions: 主要用于创建和渲染提示词字符串,接口的返回值类型均是String类型,这是提示词的基本形式。
  • PromptTemplateActions: 主要用于创建Prompt对象,该对象可直接传递给ChatClient以生成响应。
  • PromptTemplateMessageActions:主要用于创建Message对象,这允许我们针对Message对象进行其他的相关操作。

 例如,我们想定义一个这样的提示词:提供作者姓名,返回该作者最受欢迎的书,出版时间和书的内容概述

    @GetMapping("/template")public String promptTemplate(String author){// 提示词final String template = "请问{author}最受欢迎的书是哪本书?什么时候发布的?书的内容是什么?";PromptTemplate promptTemplate = new PromptTemplate(template);// 动态地将author填充进去Prompt prompt = promptTemplate.create(Map.of("author", author));ChatResponse chatResponse = chatClient.call(prompt);AssistantMessage assistantMessage = chatResponse.getResult().getOutput();return assistantMessage.getContent();}

 我们除了可以通过定义字符串加载Template以外,我们还可以以Resource的形式加载Template,例如,我们在resouces下创建prompt.st(文件后缀名合理即可),将刚刚的提示词模板写入到该文件中。

package com.ningning0111.controller;import org.springframework.ai.chat.ChatClient;
import org.springframework.ai.chat.ChatResponse;
import org.springframework.ai.chat.messages.AssistantMessage;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.chat.prompt.PromptTemplate;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.core.io.Resource;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;import java.util.Map;@RestController
public class ChatController {private final ChatClient chatClient;@Value("classpath:prompt.st")private Resource templateResource;public ChatController(ChatClient chatClient) {this.chatClient = chatClient;}@GetMapping("/template")public String promptTemplate(String author){// 提示词PromptTemplate promptTemplate = new PromptTemplate(templateResource);// 动态地将author填充进去Prompt prompt = promptTemplate.create(Map.of("author", author));ChatResponse chatResponse = chatClient.call(prompt);AssistantMessage assistantMessage = chatResponse.getResult().getOutput();return assistantMessage.getContent();}}

5.2 实现代码生成器

 上面已经将Prompt的使用介绍得比较清楚了,接着我们可以使用Prompt来创建一个代码生成器的接口,通过传入描述消息、语言信息和方法名称来得到响应代码。提示词模板code.st文件内容如下:

/*** @language {language}* @method {methodName}* @describe {description}**/

接口代码如下:

@Value("classpath:code.st")private Resource codeTemplate;@GetMapping("/code")public String generateCode(@RequestParam String description, @RequestParam String language, @RequestParam String methodName) {PromptTemplate promptTemplate = new PromptTemplate(codeTemplate);Prompt prompt = promptTemplate.create(Map.of("description", description, "language", language, "methodName", methodName));ChatResponse chatResponse = chatClient.call(prompt);AssistantMessage assistantMessage = chatResponse.getResult().getOutput();return assistantMessage.getContent();}

效果如下:

 在设计代码生成器接口时,我们还可以提供我们项目代码的上下文信息,这样,AI就能根据我们项目里的代码信息,更加准确的生成我们可使用的业务代码了。

5.3 OutputParser 生成解析器

Spring AI不仅为我们提供了PromptTemplate让我们快速的构建用于输入AI的提示词,还为我们提供了OutputParser解析器,该解析器可以将AI生成的内容解析为Java Bean对象。该解析器类似于ORM框架中的Mapper,将AI的生成内容映射为Java对象。
OutputParser结合了Parser<T>FormatProvider
FormatProvider接口用于提供一些文本指令,来限制AI的输出格式,这里就用到了提示词,我们可以通过阅读源码来查看Spring AI内部设定的相关提示词:



Parser<T>接口用于解析AI生成的内容并将其转换为Java对象返回。
在Spring AI中,OutputParser接口有三个具体的实现类:

  • BeanOutputParser: 通过让AI生成JSON格式的文本,然后通过JSON反序列化为Java对象返回;
  • MapOutputParser: 与BeanOutputParser的功能类似,但会将JSON反序列化为Map对象;
  • ListOutputParser: 让AI生成以逗号分隔的列表;

一般的,我们会先使用**FormatProvider**获取输出限制的提示词对AI生成的文本格式进行限制,然后用**Parser<T>**来解析我们生成的内容作为一个Bean对象

 接下来将主要演示下BeanOutputParser解析器的使用。

5.4 OutputParser解析器示例

 功能描述:通过传入作者名称,返回包含作者名、该作者最受欢迎的书的名称,出版时间以及书中内容描述的Java对象。
定义一个Book类,创建构造器和相关Get、Set方法:

package com.ningning0111.model;public class Book {private String author;private String bookName;private String publishedDate;private String description;public Book(){};public String getBookName() {return bookName;}public void setBookName(String bookName) {this.bookName = bookName;}public Book(String author, String publishedDate, String description, String bookName) {this.author = author;this.publishedDate = publishedDate;this.description = description;this.bookName = bookName;}public String getAuthor() {return author;}public String getPublishedDate() {return publishedDate;}public String getDescription() {return description;}public void setAuthor(String author) {this.author = author;}public void setPublishedDate(String publishedDate) {this.publishedDate = publishedDate;}public void setDescription(String description) {this.description = description;}
}

接口代码:

    @GetMapping("/bean")public Book getBookByAuthor(String author) {final String template = """请告诉我{author}最受欢迎的书是哪本?什么时间出版的?书的内容描述了什么?{format}""";// 定义一个输出解析器OutputParser<Book> bookParser = new BeanOutputParser<>(Book.class);PromptTemplate promptTemplate = new PromptTemplate(template);Prompt prompt = promptTemplate.create(Map.of("author", author, "format", bookParser.getFormat()));ChatResponse chatResponse = chatClient.call(prompt);AssistantMessage assistantMessage = chatResponse.getResult().getOutput();// 解析为一个Bean对象Book book = bookParser.parse(assistantMessage.getContent());return book;}



 可以看到,我们通过提示词对AI生成的内容格式进行限制后,就能很轻松地将输出内容转换为Java对象供我们使用了。

这篇关于Spring AI教程(二)Chat API之Prompts模板语法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927367

相关文章

Spring Security常见问题及解决方案

《SpringSecurity常见问题及解决方案》SpringSecurity是Spring生态的安全框架,提供认证、授权及攻击防护,支持JWT、OAuth2集成,适用于保护Spring应用,需配置... 目录Spring Security 简介Spring Security 核心概念1. ​Securit

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

SpringBoot改造MCP服务器的详细说明(StreamableHTTP 类型)

《SpringBoot改造MCP服务器的详细说明(StreamableHTTP类型)》本文介绍了SpringBoot如何实现MCPStreamableHTTP服务器,并且使用CherryStudio... 目录SpringBoot改造MCP服务器(StreamableHTTP)1 项目说明2 使用说明2.1

spring中的@MapperScan注解属性解析

《spring中的@MapperScan注解属性解析》@MapperScan是Spring集成MyBatis时自动扫描Mapper接口的注解,简化配置并支持多数据源,通过属性控制扫描路径和过滤条件,利... 目录一、核心功能与作用二、注解属性解析三、底层实现原理四、使用场景与最佳实践五、注意事项与常见问题六

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避