【智能算法】寄生捕食算法(PPA)原理及实现

2024-04-23 00:12

本文主要是介绍【智能算法】寄生捕食算法(PPA)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献


1.背景

2020年,AAA Mohamed等人受到自然界乌鸦-布谷鸟-猫寄生系统启发,提出了寄生捕食算法(Parasitism – Predation Algorithm, PPA)。

在这里插入图片描述
在这里插入图片描述

2.算法原理

2.1算法思想

PPA是受乌鸦和布谷鸟寄生互动启发,寄生系统中乌鸦允许布谷鸟在其巢中寄生,而布谷鸟幼鸟会分泌恶臭物质以保护自身及乌鸦幼鸟免受猫科动物的捕食。PPA主要分为三个阶段:筑巢阶段、寄生阶段和捕食阶段

2.2算法过程

筑巢阶段

刚开始乌鸦的数量会随着时间的推移而减少,筑巢阶段通过两种状态来模拟乌鸦的飞行:
X i t + 1 = X i t + F ( X r 1 − X i t ) ∀ i ∈ n c r o w (1) X_i^{t+1}=X_i^t+F(X_{r1}-X_i^t)\quad\forall i\in n_{crow}\tag{1} Xit+1=Xit+F(Xr1Xit)incrow(1)
其中,F是莱维飞行步长。在筑巢阶段,通过Levy飞行,利用当前最优的巢群来更新新的解决方案,从而发现鸟巢:
X i , o u t n e w = X i , o u t m i n + ( X i , o u t m a x − X i , o u t m i n ) (2) X_{i,out}^{new}=X_{i,out}^{min}+\begin{pmatrix}X_{i,out}^{max}-X_{i,out}^{min}\end{pmatrix}\tag{2} Xi,outnew=Xi,outmin+(Xi,outmaxXi,outmin)(2)

寄生阶段

布谷鸟根据适合度选择被寄生的巢穴,巢穴越好,被寄生的几率越高:
X i , n e w c u c k o o = X i , o l d c u c k o o + S G . k S G = ( X r 2 − X r 3 ) r a n d [ 0 , 1 ] (3) \begin{aligned}&X_{i,new}^{cuckoo}=X_{i,old}^{cuckoo}+S_{G}.k\\&S_{G}=(X_{r2}-X_{r3})rand[0,1]\end{aligned}\tag{3} Xi,newcuckoo=Xi,oldcuckoo+SG.kSG=(Xr2Xr3)rand[0,1](3)

捕食阶段

初始阶段,由于猫的高捕食效率,导致其数量迅速增加,而乌鸦数量减少,进而无法提供足够资源支持布谷鸟生存。此时,布谷鸟幼鸟会分泌特殊化合物来驱赶猫,而猫则倾向于追踪那些未被布谷鸟占据且无恶臭分泌的巢穴:
v k , d = v k , d + r . c . ( x b e s t , d − x k , d ) , d = 1 , 2 , ⋯ . . , M (4) v_{k,d}=v_{k,d}+r.c.(x_{best,d}-x_{k,d}),d=1,2,\cdots..,M\tag{4} vk,d=vk,d+r.c.(xbest,dxk,d),d=1,2,..,M(4)
位置更新:
x k , d = x k , d + v k , d (5) x_{k,d}=x_{k,d}+v_{k,d}\tag{5} xk,d=xk,d+vk,d(5)

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试PPA性能 一键run.m

  • 【智能算法】省时方便,智能算法统计指标——一键运行~

CEC2017-F2
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Mohamed A A A, Hassan S A, Hemeida A M, et al. Parasitism–Predation algorithm (PPA): A novel approach for feature selection[J]. Ain Shams Engineering Journal, 2020, 11(2): 293-308.

这篇关于【智能算法】寄生捕食算法(PPA)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927251

相关文章

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

Golang中map缩容的实现

《Golang中map缩容的实现》本文主要介绍了Go语言中map的扩缩容机制,包括grow和hashGrow方法的处理,具有一定的参考价值,感兴趣的可以了解一下... 目录基本分析带来的隐患为什么不支持缩容基本分析在 Go 底层源码 src/runtime/map.go 中,扩缩容的处理方法是 grow

Go 1.23中Timer无buffer的实现方式详解

《Go1.23中Timer无buffer的实现方式详解》在Go1.23中,Timer的实现通常是通过time包提供的time.Timer类型来实现的,本文主要介绍了Go1.23中Timer无buff... 目录Timer 的基本实现无缓冲区的实现自定义无缓冲 Timer 实现更复杂的 Timer 实现总结在

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计