Linux gettid()系统调用源码分析

2024-04-22 22:12

本文主要是介绍Linux gettid()系统调用源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、gettid()系统调用作用

gettid() 是一个Linux系统调用,用于获取当前进程的线程ID。在使用此系统调用时,你需要包含 <sys/syscall.h> 头文件,并且可以通过直接调用或使用 syscall() 函数来进行系统调用。
注意:ps 中显示的PID列的值和gettid()的值是一样的

以下是一个简单的示例代码,展示如何使用 gettid() 获取当前线程的ID:

#define _GNU_SOURCE
#include <unistd.h>
#include <sys/syscall.h>
#include <stdio.h>int main() {pid_t tid;// 直接调用gettid()tid = syscall(SYS_gettid);printf("当前线程的ID是: %ld\n", (long)tid);return 0;
}

2、getpid()系统调用定义

/* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)
{return task_pid_vnr(current);
}

从系统调用注释解释可以看出,gettid()系统调用获取的是内核的pid值。

3、gettid()代码流程分析

我们从task_pid_vnr()函数开始分析,这里task_pid_vnr()调用内部函数__task_pid_nr_ns()函数,将当前线程的task_struct以及pid_type=PIDTYPE_PID作为参数传入;

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
}pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,struct pid_namespace *ns)
{pid_t nr = 0;rcu_read_lock();if (!ns) // 由于我们传入到ns指针为NULL,所以需要重新根据当前线程的task_struct获取nsns = task_active_pid_ns(current);// 根据传入pid_type和task_struct指针获取pid指针,再通过pid_nr_ns()从ns中提取到pid值nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);rcu_read_unlock();// 返回当前线程的pidreturn nr;
}
EXPORT_SYMBOL(__task_pid_nr_ns);

我们下面逐步分析一下这几个关键函数的具体实现:

3.1 task_active_pid_ns()

struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
{return ns_of_pid(task_pid(tsk));
}
EXPORT_SYMBOL_GPL(task_active_pid_ns);static inline struct pid *task_pid(struct task_struct *task)
{return task->thread_pid;
}/** ns_of_pid() returns the pid namespace in which the specified pid was* allocated.** NOTE:* 	ns_of_pid() is expected to be called for a process (task) that has* 	an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid* 	is expected to be non-NULL. If @pid is NULL, caller should handle* 	the resulting NULL pid-ns.*/
static inline struct pid_namespace *ns_of_pid(struct pid *pid)
{struct pid_namespace *ns = NULL;if (pid)ns = pid->numbers[pid->level].ns;return ns;
}

task_active_pid_ns()根据传入的task_struct对象,获取task->thread_pid,然后再通过pid获取到ns。

3.2 task_pid_ptr()

static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
{return (type == PIDTYPE_PID) ?&task->thread_pid :&task->signal->pids[type];
}

由于我们传入的pid_type=PIDTYPE_PID,所以这里直接返回task->thread_pid指针的地址。

3.3 pid_nr_ns()

pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
{struct upid *upid;pid_t nr = 0;// 如果pid存在,且ns->level小于等于pid->levelif (pid && ns->level <= pid->level) {upid = &pid->numbers[ns->level]; // 以level为下标从pid->numbers获取upidif (upid->ns == ns) // 如果upid->ns == ns,则返回upid->nr值,否则返回0nr = upid->nr;}return nr;
}
EXPORT_SYMBOL_GPL(pid_nr_ns);

到这里可以发现,gettid()涉及到好多结构中的数据获取,最终得到upid->nr中保存的pid值。

4、0号线程的pid探究

上面我们知道了gettid()的工作流程,我们拿0号idle内核线程来带入,探究一下idle线程的pid为什么是0。

struct task_struct init_task
#ifdef CONFIG_ARCH_TASK_STRUCT_ON_STACK__init_task_data
#endif__aligned(L1_CACHE_BYTES)
= {
#ifdef CONFIG_THREAD_INFO_IN_TASK.thread_info	= INIT_THREAD_INFO(init_task),.stack_refcount	= REFCOUNT_INIT(1),
#endif
...
.thread_pid	= &init_struct_pid,
...
};
EXPORT_SYMBOL(init_task);

我们都知道0号内核线程的管理结构是init_task,现在我们只关注thread_pid,这个thread_pid也是一开始初始化好的,指向init_struct_pid;

struct pid init_struct_pid = {.count		= REFCOUNT_INIT(1),.tasks		= {{ .first = NULL },{ .first = NULL },{ .first = NULL },},.level		= 0,.numbers	= { {.nr		= 0,.ns		= &init_pid_ns,}, }
};

这里init_struct_pid.numbers.ns是init_pid_ns;

/** PID-map pages start out as NULL, they get allocated upon* first use and are never deallocated. This way a low pid_max* value does not cause lots of bitmaps to be allocated, but* the scheme scales to up to 4 million PIDs, runtime.*/
struct pid_namespace init_pid_ns = {.kref = KREF_INIT(2),.idr = IDR_INIT(init_pid_ns.idr),.pid_allocated = PIDNS_ADDING,.level = 0,.child_reaper = &init_task,.user_ns = &init_user_ns,.ns.inum = PROC_PID_INIT_INO,
#ifdef CONFIG_PID_NS.ns.ops = &pidns_operations,
#endif
};
EXPORT_SYMBOL_GPL(init_pid_ns);

OK,到这里我们用gettid()的逻辑推算0号线程的pid应该是为何值?

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
}pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,struct pid_namespace *ns)
{pid_t nr = 0;rcu_read_lock();if (!ns)// 这里返回的是init_pid_nsns = task_active_pid_ns(current);// task_pid_ptr()返回的是init_struct_pidnr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);rcu_read_unlock();return nr;
}
EXPORT_SYMBOL(__task_pid_nr_ns);pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
{struct upid *upid;pid_t nr = 0;// pid = init_struct_pid, ns->level = 0, pid->level = 0if (pid && ns->level <= pid->level) {// upid = { .nr	= 0, .ns = &init_pid_ns, }upid = &pid->numbers[ns->level];if (upid->ns == ns) // upid->ns == ns// nr = 0nr = upid->nr;}return nr;
}
EXPORT_SYMBOL_GPL(pid_nr_ns);

所以0号内核线程的pid为0。

本篇博文到此结束,多谢各位读者浏览!!!

这篇关于Linux gettid()系统调用源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926996

相关文章

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

Linux之软件包管理器yum详解

《Linux之软件包管理器yum详解》文章介绍了现代类Unix操作系统中软件包管理和包存储库的工作原理,以及如何使用包管理器如yum来安装、更新和卸载软件,文章还介绍了如何配置yum源,更新系统软件包... 目录软件包yumyum语法yum常用命令yum源配置文件介绍更新yum源查看已经安装软件的方法总结软

linux报错INFO:task xxxxxx:634 blocked for more than 120 seconds.三种解决方式

《linux报错INFO:taskxxxxxx:634blockedformorethan120seconds.三种解决方式》文章描述了一个Linux最小系统运行时出现的“hung_ta... 目录1.问题描述2.解决办法2.1 缩小文件系统缓存大小2.2 修改系统IO调度策略2.3 取消120秒时间限制3

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

Linux:alias如何设置永久生效

《Linux:alias如何设置永久生效》在Linux中设置别名永久生效的步骤包括:在/root/.bashrc文件中配置别名,保存并退出,然后使用source命令(或点命令)使配置立即生效,这样,别... 目录linux:alias设置永久生效步骤保存退出后功能总结Linux:alias设置永久生效步骤

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动