Skill Check: Building Blocks for an LLM Application

2024-04-22 21:04

本文主要是介绍Skill Check: Building Blocks for an LLM Application,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Skill Check: Building Blocks for an LLM Application

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于Skill Check: Building Blocks for an LLM Application的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926857

相关文章

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

(南京观海微电子)——GH7006 Application Note

Features ⚫ Single chip solution for a WXGA α-Si type LCD display ⚫ Integrate 1200 channel source driver and timing controller ⚫ Display Resolution: ◼ 800 RGB x 480 ◼ 640 RGB x 480 ⚫ Display int

SOMEIP_ETS_095: SD_Check_subscribe_eventgroup_ttl_expired

测试目的: 验证DUT(Device Under Test)能够检测到测试器(Tester)的订阅已过期(ttl = 3秒),并且在TTL过期后不响应测试器触发的事件。 描述 本测试用例旨在确保DUT能够识别测试器的订阅已过期,并在订阅过期后不响应测试器通过TriggerEventUint8方法触发的事件。 测试拓扑: 具体步骤: TESTER:发送订阅事件组消息,用于事件组0x0

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互

LLM应用实战: 产业治理多标签分类

数据介绍 标签体系 产业治理方面的标签体系共计200+个,每个标签共有4个层级,且第3、4层级有标签含义的概括信息。 原始数据 企业官网介绍数据,包括基本介绍、主要产品等 企业专利数据,包括专利名称和专利摘要信息,且专利的数据量大。 LLM选型 经调研,采用Qwen2-72B-Instruct-GPTQ-Int4量化版本,占用显存更少,且效果与非量化相当,

git中,隐藏application.properties文件,修改不用提交了

git中,隐藏application.properties文件,修改不用提交了 A、将文件名放入 .gitignore 文件中 B、执行git命令隐藏文件         执行在ide上执行命令         a、执行隐藏命令 git rm --cached src/main/resources/application.properties          b、执行提交命

LLM大模型教程:langchain 教程

软件安装 pip install pymupdfpip install langchainpip install langchain-cliconda install -c pytorch -c nvidia faiss-gpu=1.7.4 mkl=2021 blas=1.0=mkl 由于langchain不支持qwen模型,我们需要自定义模型 from typing import A

LLM模型:代码讲解Transformer运行原理

视频讲解、获取源码:LLM模型:代码讲解Transformer运行原理(1)_哔哩哔哩_bilibili 1 训练保存模型文件 2 模型推理 3 推理代码 import torchimport tiktokenfrom wutenglan_model import WutenglanModelimport pyttsx3# 设置设备为CUDA(如果可用),否则使用CPU#

[论文笔记] LLM大模型剪枝篇——2、剪枝总体方案

https://github.com/sramshetty/ShortGPT/tree/main My剪枝方案(暂定):         剪枝目标:1.5B —> 100~600M         剪枝方法:                 层粒度剪枝                 1、基于BI分数选择P%的冗余层,P=60~80                 2、对前N%冗余层,

jmeter压力测试,通过LLM利用RAG实现知识库问答,NEO4J部署,GraphRAG以知识图谱在查询时增强提示实现更准确的知识库问答(9/7)

前言         这周也是杂七杂八的一天(高情商:我是一块砖,哪里需要往哪里搬),首先是接触了jemter这个压力测试工具,然后帮公司的AIGC项目编写使用手册和问答手册的第一版,并通过这个平台的智能体实现知识库问答的功能展示,以及部分个人扩展和思考(NEO4J创建知识图谱的GraphRAG)。 Jmeter         Jmeter是一个压力测试工具,一开始导师叫我熟悉的时候我还说