linux动态库类的调用

2024-04-22 18:38
文章标签 动态 linux 调用 库类

本文主要是介绍linux动态库类的调用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/zzd121333/article/details/51684262

关于动态调用动态库方法说明 
一、  动态库概述 
1、  动态库的概念 
日常编程中,常有一些函数不需要进行编译或者可以在多个文件中使用(如数据库输入/输出操作或屏幕控制等标准任务函数)。可以事先对这些函数进行编译,然后将它们放置在一些特殊的目标代码文件中,这些目标代码文件就称为库。库文件中的函数可以通过连接程序与应用程序进行链接,这样就不必在每次开发程序时都对这些通用的函数进行编译了。

       动态库是一种在已经编译完毕的程序开始启动运行时,才被加载来调用其中函数的库。其加载方式与静态库截然不同。

2、  动态库的命名 
Linux下,动态库通常以.so(share object)结尾。(通常/lib和/usr/lib等目录下存在大量系统提供的以.so结尾的动态库文件)

Windows下,动态库常以.dll结尾。(通常C:\windows\System32等目录下存在大量系统提供的以.dll结尾的动态库文件)

3、  动态库与静态库之间的区别 
静态库是指编译连接时,把库文件的代码全部加入到可执行文件中,所以生成的文件较大,但运行时,就不再需要库文件了。即,程序与静态库编译链接后,即使删除静态库文件,程序也可正常执行。

动态库正好相反,在编译链接时,没有把库文件的代码加入到可执行文件中,所以生成的文件较小,但运行时,仍需要加载库文件。即,程序只在执行启动时才加载动态库,如果删除动态库文件,程序将会因为无法读取动态库而产生异常。

二、        Linux下动态调用动态库 
备注:以下linux实例说明都是在RedHat 5.1系统+ gcc 版本 4.1.2 20080704 (Red Hat 4.1.2-46)上实现。

1、  .so动态库的生成 
可使用gcc或者g++编译器生成动态库文件(此处以g++编译器为例)

g++ -shared -fPIC -c XXX.cpp

g++ -shared -fPIC -o XXX.so XXX.o

2、  .so动态库的动态调用接口函数说明 
动态库的调用关系可以在需要调用动态库的程序编译时,通过g++的-L和-l命令来指定。例如:程序test启动时需要加载目录/root/src/lib中的libtest_so1.so动态库,编译命令可照如下编写执行:

g++ -g -o test test.cpp –L/root/src/lib –ltest_so1

(此处,我们重点讲解动态库的动态调用的方法,关于静态的通过g++编译命令调用的方式不作详细讲解,具体相关内容可上网查询)

 

Linux下,提供专门的一组API用于完成打开动态库,查找符号,处理出错,关闭动态库等功能。

下面对这些接口函数逐一介绍(调用这些接口时,需引用头文件#include <dlfcn.h>):

1)        dlopen

函数原型:void *dlopen(const char *libname,int flag);

功能描述:dlopen必须在dlerror,dlsym和dlclose之前调用,表示要将库装载到内存,准备使用。如果要装载的库依赖于其它库,必须首先装载依赖库。如果dlopen操作失败,返回NULL值;如果库已经被装载过,则dlopen会返回同样的句柄。

参数中的libname一般是库的全路径,这样dlopen会直接装载该文件;如果只是指定了库名称,在dlopen会按照下面的机制去搜寻:

a.根据环境变量LD_LIBRARY_PATH查找

b.根据/etc/ld.so.cache查找

c.查找依次在/lib和/usr/lib目录查找。

flag参数表示处理未定义函数的方式,可以使用RTLD_LAZY或RTLD_NOW。RTLD_LAZY表示暂时不去处理未定义函数,先把库装载到内存,等用到没定义的函数再说;RTLD_NOW表示马上检查是否存在未定义的函数,若存在,则dlopen以失败告终。

2)        dlerror

函数原型:char *dlerror(void);

功能描述:dlerror可以获得最近一次dlopen,dlsym或dlclose操作的错误信息,返回NULL表示无错误。dlerror在返回错误信息的同时,也会清除错误信息。

3)        dlsym

函数原型:void *dlsym(void *handle,const char *symbol);

功能描述:在dlopen之后,库被装载到内存。dlsym可以获得指定函数(symbol)在内存中的位置(指针)。如果找不到指定函数,则dlsym会返回NULL值。但判断函数是否存在最好的方法是使用dlerror函数,

4)        dlclose

函数原型:int dlclose(void *);

功能描述:将已经装载的库句柄减一,如果句柄减至零,则该库会被卸载。如果存在析构函数,则在dlclose之后,析构函数会被调用。


二、动态加载类

加载类有点困难,因为我们需要类的一个实例,而不仅仅是一个函数指针。我们无法通过new来创建类的实例,因为类是在动态库中定义的而不是在可执行程序中定义的,况且有时候我们连动态库中具体的类的名字都不知道。

解决方案是:利用多态性!我们在可执行文件中定义一个带虚成员函数的接口基类,而在模块中定义派生实现类。通常来说,接口类是抽象的(如果一个类含有虚函数,那它就是抽象的)。因为动态加载类往往用于实现插件,这意味着必须提供一个清晰定义的接口──我们将定义一个接口类和派生实现类。

接下来,在模块中,我们会定义两个附加的类工厂函数(class factory functions)(或称对象工厂函数)。其中一个函数创建一个类实例,并返回其指针;另一个函数则用以销毁该指针。这两个函数都以extern "C"来限定修饰。

实例如下:

       testBase.h中定义一个含有纯虚函数virtual void display() const = 0的基类。

       test1.cpp中定义继承类test1,并实现虚函数virtual void display() const的定义,并实现一个创建类函数和一个销毁类指针函数。

       test2.cpp中定义继承类test2,并实现虚函数virtual void display() const的定义,并实现一个创建类函数和一个销毁类指针函数。

       main.cpp中实现动态的调用不同库中的display()方法。

testBase.h

[cpp] view plain copy
print ?
  1. #ifndef __TESTBASE_H__  
  2. #define __TESTBASE_H__  
  3.   
  4. class testBase  
  5. {  
  6. public:  
  7.         testBase(){}  
  8.         virtual ~testBase(){}  
  9.         virtual void display() = 0;  
  10. };  
  11.   
  12. typedef testBase* create_t();  
  13. typedef void destroy_t(testBase *p);  
  14. #endif  
#ifndef __TESTBASE_H__
#define __TESTBASE_H__class testBase
{
public:testBase(){}virtual ~testBase(){}virtual void display() = 0;
};typedef testBase* create_t();
typedef void destroy_t(testBase *p);
#endif

test1.cpp

[cpp] view plain copy
print ?
  1. </pre><pre name="code" class="cpp">#include<stdio.h>  
  2. #include "testBase.h"  
  3.   
  4. class test1:public testBase  
  5. {  
  6. public:  
  7.         void display()  
  8.         {  
  9.                 printf("display in test1\n");  
  10.         }  
  11. };  
  12.   
  13. extern "C" testBase* create()  
  14. {  
  15.         return new test1;  
  16. }   
  17.   
  18. extern "C" void destroy(testBase *p)  
  19. {  
  20.         delete p;  
  21. }  
</pre><pre name="code" class="cpp">#include<stdio.h>
#include "testBase.h"class test1:public testBase
{
public:void display(){printf("display in test1\n");}
};extern "C" testBase* create()
{return new test1;
} extern "C" void destroy(testBase *p)
{delete p;
}
test2.cpp
[cpp] view plain copy
print ?
  1. #include<stdio.h>  
  2. #include "testBase.h"  
  3.   
  4. class test2:public testBase  
  5. {  
  6. public:  
  7.         void display()  
  8.         {  
  9.                 printf("display in test2\n");  
  10.         }  
  11. };  
  12.   
  13. extern "C" testBase* create()  
  14. {  
  15.         return new test2;  
  16. }   
  17.   
  18. extern "C" void destroy(testBase *p)  
  19. {  
  20.         delete p;  
  21. }  
#include<stdio.h>
#include "testBase.h"class test2:public testBase
{
public:void display(){printf("display in test2\n");}
};extern "C" testBase* create()
{return new test2;
} extern "C" void destroy(testBase *p)
{delete p;
}

main.cpp

[cpp] view plain copy
print ?
  1. #include<stdio.h>  
  2. #include"testBase.h"  
  3. #include<dlfcn.h>  
  4.   
  5. int main()  
  6. {  
  7.         void *handle;  
  8.         char *error;  
  9.         handle = dlopen("./libtest2.so", RTLD_LAZY);  
  10.         if (!handle)  
  11.         {  
  12.                 printf("%s\n", dlerror());  
  13.                 return -1;  
  14.         }  
  15.         create_t* create = (create_t *)dlsym(handle, "create");  
  16.         if ( (error = dlerror()) != NULL)  
  17.         {  
  18.                 printf("%s\n", error);  
  19.                 return -1;  
  20.         }  
  21.         destroy_t* destroy = (destroy_t *)dlsym(handle, "destroy");  
  22.         if ( (error = dlerror()) != NULL)  
  23.         {  
  24.                 printf("%s\n", error);  
  25.                 return -1;  
  26.         }  
  27.         testBase *test = create();  
  28.         test->display();  
  29.         destroy(test);  
  30.   
  31.         dlclose(handle);  
  32.         return 0;  
  33. }  
#include<stdio.h>
#include"testBase.h"
#include<dlfcn.h>int main()
{void *handle;char *error;handle = dlopen("./libtest2.so", RTLD_LAZY);if (!handle){printf("%s\n", dlerror());return -1;}create_t* create = (create_t *)dlsym(handle, "create");if ( (error = dlerror()) != NULL){printf("%s\n", error);return -1;}destroy_t* destroy = (destroy_t *)dlsym(handle, "destroy");if ( (error = dlerror()) != NULL){printf("%s\n", error);return -1;}testBase *test = create();test->display();destroy(test);dlclose(handle);return 0;
}

编译:

g++ test1.cpp -fPIC -shared -olibtest1.so

g++ test2.cpp -fPIC -shared -olibtest2.so
g++ main.cpp -ldl -ltest1 -L./

三、总结:

1、必须使用 extern "C"声明的函数将使用函数名作符号名,就像C函数一样。因此,只有非成员函数才能被声明为extern "C",并且不能被重载。尽管限制多多,extern "C"函数还是非常有用,因为它们可以象C函数一样被dlopen动态加载。冠以extern "C"限定符后,并不意味着函数中无法使用C++代码了,相反,它仍然是一个完全的C++函数,可以使用任何C++特性和各种类型的参数。所以extern "C" 只是告诉编译器编和链接的时候都用c的方式的函数名字,函数里的内容可以为c的代码也可以为c++的。

2、链接时注意加动态连接参数-ldl

3、链接时要指定动态库路径(-L./)不然会会找不到动态库:cannot find -ltest1

4、运行时程序会提示如下错误

 error while loading shared libraries: libtiger.so: cannot open shared object file: No such file or direct

这是因为程序运行时没有找到动态链接库造成的。程序编译时链接动态库和运行时使用动态链接库的概念是不同的,在运行时,程序链接的动态链接库需要在系统目录下才行。

使用以下方法可以解决此问题

a. 在linux下最方便的解决方案是拷贝libtest1.so到绝对目录 /lib 下(但是,要是超级用户才可以,因此要使用sudo哦,亲)。就可以生成可执行程序了

b.第二种方法是:将动态链接库的目录放到程序搜索路径中,可以将库的路径加到环境变量LD_LIBRARY_PATH中实现:

export LD_LIBRARY_PATH=`pwd`:$LD_LIBRARY_PATH

这篇关于linux动态库类的调用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926564

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

一分钟带你上手Python调用DeepSeek的API

《一分钟带你上手Python调用DeepSeek的API》最近DeepSeek非常火,作为一枚对前言技术非常关注的程序员来说,自然都想对接DeepSeek的API来体验一把,下面小编就来为大家介绍一下... 目录前言免费体验API-Key申请首次调用API基本概念最小单元推理模型智能体自定义界面总结前言最