四--RIL层代码分析--整个电话来访过程

2024-04-22 17:38

本文主要是介绍四--RIL层代码分析--整个电话来访过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        最近公司开发一个几百万的项目,要求重写系统RIL层,看了几个招聘信息,只要你会RIL层开发的,工资上w每个月不是梦,这是几天研究的成果,希望对大家有所帮助,兄弟们加油吧! 

先来一个总的流程图:

流程图.jpg

 

拨出电话流程:

在系统源码这个路径下/packages/apps/Phone/src/com/android/phone/DialtactsActivity.java

contactsandroidmanifest.xmlandroid:process="android.process.acore"说明此应用程序运行在acore进程中。DialtactsActivityintent-filteraction属性设置为maincatelog属性设置为launcher,所以此activity能出现首先启动的就是这个activity在主菜单中,并且是点击此应用程序的第一个界面。dialtactsactivity包含四个tab,分别由TwelveKeyDialerRecentCallsListActivity,两个activity-aliasDialtactsContactsEntryActivityDialtactsFavoritesEntryActivity分别表示联系人和收藏tab,但是正真的联系人列表和收藏是由ContactsListActivity负责。

2

进入TwelveKeyDialer OnClick方法,按住的按钮id为:R.id.digits,执行

placecall()

Intent intent = newIntent(Intent.ACTION_CALL_PRIVILEGED,

           Uri.fromParts("tel", number, null));

intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

startActivity(intent);

3

intert.ACTION_CALL_PRIVILEGED实际字符串为android.intent.action.CALL_PRIVILEGED,通过查找知道了packegs/phone下面的androidmanifest.xmlPrivilegedOutgoingCallBroadcasteractivity-alias设置了intent-filter,所以需要找到其targetactivityOutgoingCallBroadcaster。所以进入OutgoingCallBroadcaster


onCreate()

//如果为紧急号码马上启动intent.setClass(this,InCallScreen.class); startActivity(intent);


Intent broadcastIntent = new Intent(Intent.ACTION_NEW_OUTGOING_CALL);


       if (number != null) broadcastIntent.putExtra(Intent.EXTRA_PHONE_NUMBER,number);


       broadcastIntent.putExtra(EXTRA_ALREADY_CALLED, callNow);


       broadcastIntent.putExtra(EXTRA_ORIGINAL_URI,intent.getData().toString());


       if (LOGV) Log.v(TAG, "Broadcasting intent " + broadcastIntent+ ".");


       sendOrderedBroadcast(broadcastIntent, PERMISSION, null, null,


                            Activity.RESULT_OK, number, null);


4Intent.ACTION_NEW_OUTGOING_CALL实际字符串为android.intent.action.NEW_OUTGOING_CALL,通过查找知道了packegs/phone


下面的androidmanifest.xmlOutgoingCallReceiver Receiver接收此intent消息。找到OutgoingCallReceiver,执行


onReceive()函数


Intent newIntent = new Intent(Intent.ACTION_CALL, uri);


       newIntent.putExtra(Intent.EXTRA_PHONE_NUMBER, number);


       newIntent.setClass(context, InCallScreen.class);


       newIntent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

5、请求拨号的java部分流程


onCreate(第一次)/onNewIntent(非第一次)


internalResolveIntent


   placeCall(intent);


     PhoneUtils.placeCall(mPhone, number, intent.getData());


       phone.dial(number);


         mCT.dial(newDialString);


           dial(dialString, CommandsInterface.CLIR_DEFAULT);


              cm.dial(pendingMO.address,clirMode,obtainCompleteMessage());//obtainCompleteMessage(EVENT_OPERATION_COMPLETE);


                send(rr);


                  msg =mSender.obtainMessage(EVENT_SEND, rr);


                  acquireWakeLock();


                  msg.sendToTarget();


                RILSender.handleMessage()


                  case EVENT_SEND:


                    ...


                   s.getOutputStream().write(dataLength);                  


                    s.getOutputStream().write(data);//从这里流程跑到下面ril.cpp中监听部份


---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

上面步骤:为APP就是java层传下的信息(就是执行的动作:按键打电话),已经做完,下面讲RIL层如何来接受上层来的信息

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

第一、《创建轮询机制》

 

6.请求拨号的c/c++部分流程

/*初始化事件循环,启动串口监听,注册socket监听*/

6.1在til/rild/rild.c为入口函数

RIL_startEventLoop()

6.2在libril/ril.cpp

第一、建立事件循环线程

ret = pthread_create(&s_tid_dispatch, &attr, eventLoop, NULL);

RIL_startEventLoop(void){

    ..........

ret = pthread_create(&s_tid_dispatch, &attr, eventLoop, NULL);//创建线程,为入口函数,去实现它的功能

}

--------------------------------------------------------------------

eventLoop入口函数->跳到/ril/libril/ril.cpp 实现

----------------------------------------------------------------------

eventLoop(void *param)

{
ril_event_init();/*初始化*/

void ril_event_init()
{
    MUTEX_INIT();
LOGD("-2.2-Ril_evnet.cpp-ril_event_init-shi-xian-han-shu-");
    FD_ZERO(&readFds);
    init_list(&timer_list);
    init_list(&pending_list);
    memset(watch_table, 0, sizeof(watch_table));
}
ret = pipe(filedes);
s_fdWakeupRead = filedes[0];/
* 消息循环中侦听*/
s_fdWakeupWrite = filedes[1];/* 用于通知消息循环定义消息已发送*/

第二、注册进程唤醒事件回调
ril_event_set(&s_wakeupfd_event, s_fdWakeupRead, true, processWakeupCallback, NULL);/*注册进程唤醒事件回调*/

static void processWakeupCallback(int fd, short flags, void *param) {
    char buff[16];
    int ret;
LOGD("--2.5-ril_event_set--processWakeupCallback- read(s_fdWakeupRead, &buff, sizeof(buff));---");
    LOGV("processWakeupCallback");

    /* empty our wakeup socket out */
    do {
       
ret = read(s_fdWakeupRead, &buff, sizeof(buff));
    } while (ret > 0 || (ret < 0 && errno == EINTR));
}


              
rilEventAddWakeup (&s_wakeupfd_event);
->static void rilEventAddWakeup(struct ril_event *ev)
                           {
                                  ril_event_add(ev);
                                  triggerEvLoop();
                           }
// Add event to watch list
void ril_event_add(struct ril_event * ev)
{
LOGD("---RIL_evnent.cpp--shi--xian--void ril_event_add(struct ril_event * ev)----");
    dlog("~~~~ +ril_event_add ~~~~");
    MUTEX_ACQUIRE();
    for (int i = 0; i < MAX_FD_EVLL) {
 //1:
            watch_table[i] = ev;//把上面ril_event_add函数添加的事件_wakeupfd_event结构体添加到这个数组来
            ev->index = i;
            dlog("~~~~ added at %d ~~~~", i);
            dump_event(ev);
 //2:
            FD_SET(ev->fd, &readFds);
            if (ev->fd >= nfds) nfds = ev->fd+1;
            dlog("~~~~ nfds = %d ~~~~", nfds);
            break;ENTS; i++) {
        if (watch_table[i] == NU
        }
    }
    MUTEX_RELEASE();
    dlog("~~~~ -ril_event_add ~~~~");
}


static void triggerEvLoop(){
    int ret;
 LOGD("--- ret = write (s_fdWakeupWrite, " ", 1);---");
    if (!pthread_equal(pthread_self(), s_tid_dispatch)) {
        /* trigger event loop to wakeup. No reason to do this,
         * if we're in the event loop thread */
         do {
        
    ret = write (s_fdWakeupWrite, " ", 1);
         } while (ret < 0 && errno == EINTR);
    }
}

第三、建立事件循环
ril_event_loop();/
*建立事件循环*/

}
4.
当调用ril_event_loop()时,就去跳到->reference-ril/reference-ril.c去实现

/* 我们知道对于Linux 设备来讲,我们可以使用select 函数等待在FDS 上,只要FDS 中记录的设备有数据到来,
select 就会设置相应的标志位并返回。readFDS 记录了所有的事件相关设备句柄。readFDS 中句柄是在在AddEvent
加入的。所有的事件侦听都是建立在linux 的select readFDS 基础上。

ril_event_loop 利用select 等待在readFDS  (fd_set)上,当select 设备有数据时,ril_event_loop 会从select 返回,
在watch_list 中相应的Event 放置到pend_list,如果Event 是持久性的则不从watch_list 中删除。然后ril_event_loop
遍历pengding_list 处理Event 事件,发起事件回调函数。
*/

void ril_event_loop()
{
    int n;
    fd_set rfds;
    struct timeval tv;
    struct timeval * ptv

   for (;;) {

         ...}

         n =select(nfds, &rfds,NULL, NULL, ptv);//等待唤醒fd

         // Check for timeouts

         processTimeouts();// 处理定时消息 ,处理ril_event_init ->pending_list

         // Check for read-ready

         processReadReadies(&rfds, n);// 处理侦听消息 ,处理ril_event_init ->watch_list

         // Fire away

         firePending(); // 处理挂起消息

       }

 ######################################################################################################################

多路复用I/O机制的运转
上文说到request是接收,是通过ril_event_loop中的多路复用I/O,也对初始化做了分析.现在我们来仔细看看这个机制如何运转.
ril_event_set负责配置一个event,主要有两种event:
ril_event_add添加使用多路I/O的event,它负责将其挂到队列,同时将event的通道句柄fd加入到watch_table,然后通过select等待.
ril_timer_add添加timer event,它将其挂在队列,同时重新计算最短超时时间.
无论哪种add,最后都会调用triggerEvLoop来刷新队列,更新超时值或等待对象.

刷新之后, ril_event_loop从阻塞的位置,select返回,只有两种可能,一是超时,二是等待到了某I/O操作.
超时的处理在processTimeouts中,摘下超时的event,加入pending_list.
检查有I/O操作的通道的处理在processReadReadies中,将超时的event加入pending_list.
最后在firePending中,检索pending_list的event并依次执行event->func.
这些操作完之后,计算新超时时间,并重新select阻塞于多路I/O.

前面的初始化流程已分析得知,初始化完成以后,队列上挂了3个event对象,分别是:
s_listen_event: 名为rild的socket,主要requeset & response通道
s_debug_event: 名为rild-debug的socket,调试用requeset & response通道(流程与s_listen_event基本相同,后面仅分析s_listen_event)
s_wakeupfd_event: 无名管道,用于队列主动唤醒(前面提到的队列刷新,就用它来实现,请参考使用它的相关地方)

 ######################################################################################################################

一上电,就开始执行上面程序,不断的轮询是否有事件(主要是通过pipe作用,再通select机制来处理三态信息:监听,超时,挂起)

当有事件来了,就执行下面函数,对它初始化,和线程mainloop->readloop读取信息和->readline()响应,而

 RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0);中的initializeCallback发送AT> ATE0Q0V1命令

######################################################################################################################

第二、读取并判断modem发的信息(URC,还是响应)

6.3reference-ril/reference-ril.c->RIL_init()

/*初始化Vendor RIL 并进行注册*/

 1.入口:funcs =rilInit(&s_rilEnv, argc, rilArgv);//实际是通过动态加载动态库的方式执行reference-ril.c中的RIL_Init


const RIL_RadioFunctions *RIL_Init(const struct RIL_Env *env, int argc, char **argv)
{
   
    while ( -1 != (opt = getopt(argc, argv, "p:d:s:"))) {
        switch (opt) {
      //获取dev/ttyUSB,只是打开而已,是否获取,由线程mainLoop执行完才知道
            case 'd':
                s_device_path = optarg;
                LOGI("Opening tty device %s\n", s_device_path);
            break;

            case 's':
                s_device_path   = optarg;
                s_device_socket = 1;
                LOGI("Opening socket %s\n", s

_device_path);
            break;

        return NULL;
    }

    第四、单独启动一个线程读取串口数据
    ret = pthread_create(&s_tid_mainloop, &attr,mainLoop, NULL);//
创建一个线程mainLoop

    return &s_callbacks;//返回一个ril_init,给 RIL_register(&s_callbacks);回调,进行初始化
}

6.4实现mainloop()函数
static void *
mainLoop(void *param)
{
    at_set_on_reader_closed(onATReaderClosed);
    at_set_on_timeout(onATTimeout);

    for (;;) {
        fd = -1;
        while  (fd < 0) {
            if (s_port > 0) {
                fd = socket_loopback_client(s_port, SOCK_STREAM);
            } else if (s_device_socket) {
                if (!strcmp(s_device_path, "/dev/socket/qemud")) {
                    /* Qemu-specific control socket */
                  fd = socket_local_client( "qemud", ANDROID_SOCKET_NAMESPACE_RESERVED, SOCK_STREAM );
                    if (fd >= 0 ) {
                        char  answer[2];

                        if ( write(fd, "gsm", 3) != 3 ||
                             read(fd, answer, 2) != 2 ||
                             memcmp(answer, "OK", 2) != 0)
                        {
                            close(fd);
                            fd = -1;
                        }
                   }
                }
                else
              /*  获取rild socket*/

fd = socket_local_client( s_device_path, ANDROID_SOCKET_NAMESPACE_FILESYSTEM,SOCK_STREAM );
            } else if (s_device_path != NULL) {
                fd = open (s_device_path, O_RDWR);

        }

        ret = at_open(fd, onUnsolicited);

附:在atchannel.c

int at_open(int fd, ATUnsolHandler h)
{
#ifdef HUAWEI_EM770W /*新增的modulse*/

 {        fd2 = open ("/dev/ttyUSB2", O_RDWR);

    ret = pthread_create(&s_tid_reader_urc, &attr, urc_readerLoop, &attr);

       }

    ret = pthread_create(&s_tid_reader, &attr, readerLoop, &attr);

#endif

    return 0;
}

第五、通过readloop()函数判断为AT:等待回应还是URC请求

/*下面read的阻塞式的读取modoem(是initializeCallback()函数发送的AT命令,)发来信息,还判断是URC还是AT回应请求,并等待回应是否OK,*/

static void *readerLoop(void *arg)
{
    for (;;) {
        const char * line;

        line =readline();

        if (line == NULL) {
            break;
        }

        if(isSMSUnsolicited(line)) {
            char *line1;
            const char *line2;
            line1 = strdup(line);
            line2 = readline();

            if (line2 == NULL) {
                break;
            }

            if (s_unsolHandler != NULL) {
                s_unsolHandler (line1, line2);
            }
            free(line1);
        } else {
            processLine(line);/*对上面读取信息进行解析判断*/
        }

#ifdef HAVE_ANDROID_OS
        if (s_ackPowerIoctl > 0) {          

            ioctl(s_fd, OMAP_CSMI_TTY_ACK, &s_readCount);
            s_readCount = 0;
        }
#endif /*HAVE_ANDROID_OS*/
    }

    onReaderClosed();

    return NULL;
}

/*AT的response有两种,一种是unsolicited。另一种是普通response,也就是命令的响应。
response信息的获取在readerLoop()中。由readline()函数读取上来。
读取到的line将被传入processLine()函数进行解析,processLine()函数首先会判断当前的响应是主动响应还是普通响应,
如果是主动响应,将调用handleUnsolicited()函数,如果为普通响应,那么将调用handleFinalResponse()函数进行处理
对响应串的主要的解析过程,由at_tok.c中的各种解析函数完成,提供字符串分析解析功能。
*/
static void processLine(const char *line)
{
    pthread_mutex_lock(&s_commandmutex);

    if (sp_response == NULL) {
        /* no command pending */
        handleUnsolicited(line);
    } else if (isFinalResponseSuccess(line)) {
        sp_response->success = 1;
        handleFinalResponse(line);
    } else if (isFinalResponseError(line)) {
        sp_response->success = 0;
        handleFinalResponse(line);//1.用来处理UCR请求,上报RIL.java层
    } else if (s_smsPDU != NULL && 0 == strcmp(line, "> ")) {
        // See eg. TS 27.005 4.3
        // Commands like AT+CMGS have a "> " prompt
        writeCtrlZ(s_smsPDU);
        s_smsPDU = NULL;
    } else switch (s_type) {
        case NO_RESULT:
            handleUnsolicited(line);//2.用来处理send_at_command()发过的回应
            break;
        case NUMERIC:
            if (sp_response->p_intermediates == NULL
                && isdigit(line[0])
            ) {
                addIntermediate(line);
            } else {
                /* either we already have an intermediate response or
                   the line doesn't begin with a digit */
                handleUnsolicited(line);
            }
            break;
        case SINGLELINE:
            if (sp_response->p_intermediates == NULL
                && strStartsWith (line, s_responsePrefix)
            ) {
                addIntermediate(line);
            } else {
                /* we already have an intermediate response */
                handleUnsolicited(line);
            }
            break;
        case MULTILINE:
            if (strStartsWith (line, s_responsePrefix)) {
                addIntermediate(line);
            } else {
                handleUnsolicited(line);
            }
        break;

        default: /* this should never be reached */
            LOGE("Unsupported AT command type %d\n", s_type);
            handleUnsolicited(line);
        break;
    }

    pthread_mutex_unlock(&s_commandmutex);
}


static const char *readline()
{
//在这打印Modem回应的OK/err信息,还有是否是URC还是AT命令请求信???
    LOGD("AT< %s\n", ret);
    return ret;//返回,读取好的上面信息
}

 RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0);//打印AT> ATE0Q0V1

/*发生AT命令*/

static void initializeCallback(void *param)
{    

    at_handshake

at_send_command("ATE0Q0V1", NULL);//同步机制,send_at_command  是同步的,命令发送后,send_at_command 将等待在s_commandcond ,直到有 sp_response->finalResponse。

        setRadioState (RADIO_STATE_SIM_NOT_READY);
    }
}

       }
}

######################################################################################################################

上面函数执行完了,说明在ril_evnet_loop()轮询中有事件,再去把信息向下层的模块发生AT命令,等知道,模块的生效

接下来就要去注册到reference-ril.so动态库去,等待dlopen调用

######################################################################################################################

第三、处理两个socket

6.5libril/ril.cpp-

/*注册rild socket端口事件监听到事件循环中和bedug socket*/

第六、注册rild socket端口事件监听到事件循环中
RIL_register(funcs);


RIL_register (const RIL_RadioFunctions *callbacks){//说明已经初始化完了 ,才回调
    if (callbacks == NULL|| ! (callbacks->version == RIL_VERSION || callbacks->version == 1)) {
        LOGE("RIL_register: RIL_RadioFunctions * null or invalid version"," (expected %d)", RIL_VERSION);
        return;
    }

    if (s_registerCalled > 0) {
      LOGE("RIL_register has been called more than once. ""Subsequent call ignored");
      LOGD("RIL_register has been called more than once. ""Subsequent call ignored");
        return;
    }
//1:换个马甲
    memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions));

    s_registerCalled = 1;

    for (int i = 0; i < (int)NUM_ELEMS(s_commands); i++) {
        assert(i == s_commands[i].requestNumber);
    }

    for (int i = 0; i < (int)NUM_ELEMS(s_unsolResponses); i++) {
        assert(i + RIL_UNSOL_RESPONSE_BASE
                == s_unsolResponses[i].requestNumber);
    }

       if (s_started == 0) {
        RIL_startEventLoop();
    }

    // start listen socket  开始侦听套接字

#if 0
    ret = socket_local_server (SOCKET_NAME_RIL,ANDROID_SOCKET_NAMESPACE_ABSTRACT, SOCK_STREAM);

          s_fdListen = ret;

#else

2:获取init.rc定义的rild socket
    s_fdListen= android_get_control_socket(SOCKET_NAME_RIL);
    ret = listen(s_fdListen, 4);

#endif
/*如果ril socket 端口一有数据,就去执行listencallback函数
   这个函数就建立起与客户端的监听话柄
   s_fdLiten继续监听其他客户端的链接*/

第六、将此端口加入事件select队列
    ril_event_set (&s_listen_event, s_fdListen, false,listenCallback, NULL);

    rilEventAddWakeup (&s_listen_event);

#if 1
3.获取debug socket

    s_fdDebug= android_get_control_socket(SOCKET_NAME_RIL_DEBUG);

     ret = listen(s_fdDebug, 4);

//将此处端口加入到select队列去
    ril_event_set (&s_debug_event, s_fdDebug, true,debugCallback, NULL);

    rilEventAddWakeup (&s_debug_event);
#endif

}

  

第七、 如果rild socket端口有数据来了将执行listencallback函数

 ril_event_set (&s_listen_event, s_fdListen, false,listenCallback, NULL);
static void listenCallback(int fd, short flags, void *param) {
    int ret;
    int err;
    int is_phone_socket;
    RecordStream *p_rs;

    struct sockaddr_un peeraddr;
    socklen_t socklen = sizeof (peeraddr);

    struct ucred creds;
    socklen_t szCreds = sizeof(creds);

    struct passwd *pwd = NULL;

    assert (s_fdCommand < 0);
    assert (fd == s_fdListen);
//连接JAVA层来的sockcet
    s_fdCommand = accept(s_fdListen, (sockaddr *) &peeraddr, &socklen);

    if (s_fdCommand < 0 ) {
        LOGE("Error on accept() errno:%d", errno);
        rilEventAddWakeup(&s_listen_event);
       return;
    }

    errno = 0;
    is_phone_socket = 0;

    err = getsockopt(s_fdCommand, SOL_SOCKET, SO_PEERCRED, &creds, &szCreds);

    if (err == 0 && szCreds > 0) {
        errno = 0;
        pwd = getpwuid(creds.uid);
        if (pwd != NULL) {if (strcmp(pwd->pw_name, PHONE_PROCESS) == 0) {  is_phone_socket = 1;}

          else {
                LOGE("RILD can't accept socket from process %s", pwd->pw_name);
            }
        } else { LOGE("Error on getpwuid() errno: %d", errno); }
    } else {
        LOGD("Error on getsockopt() errno: %d", errno);
    }

    if ( !is_phone_socket ) {
      LOGE("RILD must accept socket from %s", PHONE_PROCESS);

      close(s_fdCommand);
      s_fdCommand = -1;

      onCommandsSocketClosed();

      /* start listening for new connections again */
      rilEventAddWakeup(&s_listen_event);

      return;
    }

    ret = fcntl(s_fdCommand, F_SETFL, O_NONBLOCK);

    if (ret < 0) {
        LOGE ("Error setting O_NONBLOCK errno:%d", errno);
    }

    LOGI("libril: new connection");
//有数据来的时候,把s_fdCommand绑定到record_stream_new 。目的就是保证数据的完整性
    p_rs = record_stream_new(s_fdCommand, MAX_COMMAND_BYTES);
//当有数据来的时候,函数就去执行processCommandsCallback()函数,把数据读到p_record中
    ril_event_set (&s_commands_event, s_fdCommand, 1, processCommandsCallback, p_rs);

static void processCommandsCallback(int fd, short flags, void *param) {
    RecordStream *p_rs;
    void *p_record;
    size_t recordlen;
    int ret;

    assert(fd == s_fdCommand);

    p_rs = (RecordStream *)param;
LOGD("--SHI-XIAN--ril_regieter-----static void processCommandsCallback(int fd, short flags, void *param)");
    for (;;) {
        /* loop until EAGAIN/EINTR, end of stream, or other error */

        ret = record_stream_get_next(p_rs, &p_record, &recordlen);

        if (ret == 0 && p_record == NULL) {
            /* end-of-stream */
            break;
        } else if (ret < 0) {
            break;
        } else if (ret == 0) { /* && p_record != NULL */
        //阻塞方式获取数据 到p_record 利用RecordStream机制保证数据完整
            processCommandBuffer(p_record, recordlen);
        }
    }

    if (ret == 0 || !(errno == EAGAIN || errno == EINTR)) {
        /* fatal error or end-of-stream */
        if (ret != 0) {
            LOGE("error on reading command socket errno:%d\n", errno);
        } else {
            LOGW("EOS.  Closing command socket.");
        }

        close(s_fdCommand);
        s_fdCommand = -1;

        ril_event_del(&s_commands_event);

        record_stream_free(p_rs);

        /* start listening for new connections again 开始监听新的连接*/
        rilEventAddWakeup(&s_listen_event);

        onCommandsSocketClosed();
    }
}

把accpet接受到rild socket 来的信息先绑定,后读到p_record,说明向下动作全部结束,等待onRequest发请求

 第八,状态结束,等待onRequest发请求


static int
processCommandBuffer(void *buffer, size_t buflen) {
    Parcel p;
    status_t status;
    int32_t request;
    int32_t token;
    RequestInfo *pRI;
    int ret;
LOGD("---shixian -processCommandBuffer---");
    p.setData((uint8_t *) buffer, buflen);

上面实现状态检查全部结束结束,下面为java来的请求,响应onRequest()方法

    // status checked at end 

    status = p.readInt32(&request);
    status = p.readInt32 (&token);//请求队列的序列号

    if (status != NO_ERROR) {
        LOGE("invalid request block");
        return 0;
    }

    if (request < 1 || request >= (int32_t)NUM_ELEMS(s_commands)) {
        LOGE("unsupported request code %d token %d", request, token);
        // FIXME this should perhaps return a response
        return 0;
    }


    pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo));

    pRI->token = token;
    pRI->pCI = &(s_commands[request]);

    ret = pthread_mutex_lock(&s_pendingRequestsMutex);
    assert (ret == 0);

    pRI->p_next = s_pendingRequests;
    s_pendingRequests = pRI;

    ret = pthread_mutex_unlock(&s_pendingRequestsMutex);
    assert (ret == 0);

/*    sLastDispatchedToken = token; */

    pRI->pCI->dispatchFunction(p, pRI);

  //假设是接收了dial指令,pRI->PCI->dispatchFunction(p,pRI),调用dispatchDial(p,pRI)

    return 0;
}

   s_callbacks.onRequest(pRI->pCI->requestNumber, &dial,sizeof(dial), pRI);
       in reference-ril.c onRequest()

 

/*** Callback methods from the RIL library to us ***/

/**
 * Call from RIL to us to make a RIL_REQUEST
 *
 * Must be completed with a call to RIL_onRequestComplete()
 *
 * RIL_onRequestComplete() may be called from any thread, before or after
 * this function returns.
 *
 * Will always be called from the same thread, so returning here implies
 * that the radio is ready to process another command (whether or not
 * the previous command has completed).
 */
static void
onRequest (int request, void *data, size_t datalen, RIL_Token t)
{
    ATResponse *p_response;
    int err;

    LOGD("onRequest: %s", requestToString(request));

    /* Ignore all requests except RIL_REQUEST_GET_SIM_STATUS
     * when RADIO_STATE_UNAVAILABLE.
     */
    if (sState == RADIO_STATE_UNAVAILABLE
        && request != RIL_REQUEST_GET_SIM_STATUS
    ) {
        RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
        return;
    }

    /* Ignore all non-power requests when RADIO_STATE_OFF
     * (except RIL_REQUEST_GET_SIM_STATUS)
     */
    if (sState == RADIO_STATE_OFF
        && !(request == RIL_REQUEST_RADIO_POWER
            || request == RIL_REQUEST_GET_SIM_STATUS)
    ) {
        RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);
        return;
    }

    switch (request) {
        case RIL_REQUEST_GET_SIM_STATUS: {
            RIL_CardStatus *p_card_status;
            char *p_buffer;
            int buffer_size;

            int result = getCardStatus(&p_card_status);
            if (result == RIL_E_SUCCESS) {
                p_buffer = (char *)p_card_status;
                buffer_size = sizeof(*p_card_status);
            } else {
                p_buffer = NULL;
                buffer_size = 0;
            }
            RIL_onRequestComplete(t, result, p_buffer, buffer_size);
            freeCardStatus(p_card_status);
            break;
        }
        case RIL_REQUEST_GET_CURRENT_CALLS:
            requestGetCurrentCalls(data, datalen, t);
            break;
        case RIL_REQUEST_DIAL:
            requestDial(data, datalen, t);
            break;
        case RIL_REQUEST_HANGUP:
            requestHangup(data, datalen, t);
            break;
        case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND:
            // 3GPP 22.030 6.5.5
            // "Releases all held calls or sets User Determined User Busy
            //  (UDUB) for a waiting call."
            at_send_command("AT+CHLD=0", NULL);

            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND:
            // 3GPP 22.030 6.5.5
            // "Releases all active calls (if any exist) and accepts
            //  the other (held or waiting) call."
            at_send_command("AT+CHLD=1", NULL);

            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE:
            // 3GPP 22.030 6.5.5
            // "Places all active calls (if any exist) on hold and accepts
            //  the other (held or waiting) call."
            at_send_command("AT+CHLD=2", NULL);

#ifdef WORKAROUND_ERRONEOUS_ANSWER
            s_expectAnswer = 1;
#endif /* WORKAROUND_ERRONEOUS_ANSWER */

            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        case RIL_REQUEST_ANSWER:
            at_send_command("ATA", NULL);

#ifdef WORKAROUND_ERRONEOUS_ANSWER
            s_expectAnswer = 1;
#endif /* WORKAROUND_ERRONEOUS_ANSWER */

            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        case RIL_REQUEST_CONFERENCE:
            // 3GPP 22.030 6.5.5
            // "Adds a held call to the conversation"
            at_send_command("AT+CHLD=3", NULL);

            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        case RIL_REQUEST_UDUB:
            /* user determined user busy */
            /* sometimes used: ATH */
            at_send_command("ATH", NULL);

            /* success or failure is ignored by the upper layer here.
               it will call GET_CURRENT_CALLS and determine success that way */
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;

        case RIL_REQUEST_SEPARATE_CONNECTION:
            {
                char  cmd[12];
                int   party = ((int*)data)[0];

                // Make sure that party is in a valid range.
                // (Note: The Telephony middle layer imposes a range of 1 to 7.
                // It's sufficient for us to just make sure it's single digit.)
                if (party > 0 && party < 10) {
                    sprintf(cmd, "AT+CHLD=2%d", party);
                    at_send_command(cmd, NULL);
                    RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
                } else {
                    RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
                }
            }
            break;

        case RIL_REQUEST_SIGNAL_STRENGTH:
            requestSignalStrength(data, datalen, t);
            break;
        case RIL_REQUEST_REGISTRATION_STATE:
        case RIL_REQUEST_GPRS_REGISTRATION_STATE:
            requestRegistrationState(request, data, datalen, t);
            break;
        case RIL_REQUEST_OPERATOR:
            requestOperator(data, datalen, t);
            break;
        case RIL_REQUEST_RADIO_POWER:
            requestRadioPower(data, datalen, t);
            break;
        case RIL_REQUEST_DTMF: {
            char c = ((char *)data)[0];
            char *cmd;
            asprintf(&cmd, "AT+VTS=%c", (int)c);
            at_send_command(cmd, NULL);
            free(cmd);
            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            break;
        }
        case RIL_REQUEST_SEND_SMS:
            requestSendSMS(data, datalen, t);
            break;
        case RIL_REQUEST_SETUP_DATA_CALL:
            requestSetupDataCall(data, datalen, t);
            break;
        case RIL_REQUEST_SMS_ACKNOWLEDGE:
            requestSMSAcknowledge(data, datalen, t);
            break;

        case RIL_REQUEST_GET_IMSI:
            p_response = NULL;
            err = at_send_command_numeric("AT+CIMI", &p_response);

            if (err < 0 || p_response->success == 0) {
                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
            } else {
                RIL_onRequestComplete(t, RIL_E_SUCCESS,
                    p_response->p_intermediates->line, sizeof(char *));
            }
            at_response_free(p_response);
            break;

        case RIL_REQUEST_GET_IMEI:
            p_response = NULL;
            err = at_send_command_numeric("AT+CGSN", &p_response);

            if (err < 0 || p_response->success == 0) {
                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
            } else {
                RIL_onRequestComplete(t, RIL_E_SUCCESS,
                    p_response->p_intermediates->line, sizeof(char *));
            }
            at_response_free(p_response);
            break;

        case RIL_REQUEST_SIM_IO:
            requestSIM_IO(data,datalen,t);
            break;

        case RIL_REQUEST_SEND_USSD:
            requestSendUSSD(data, datalen, t);
            break;

        case RIL_REQUEST_CANCEL_USSD:
            p_response = NULL;
            err = at_send_command_numeric("AT+CUSD=2", &p_response);

            if (err < 0 || p_response->success == 0) {
                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
            } else {
                RIL_onRequestComplete(t, RIL_E_SUCCESS,
                    p_response->p_intermediates->line, sizeof(char *));
            }
            at_response_free(p_response);
            break;

        case RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC:
            at_send_command("AT+COPS=0", NULL);
            break;

        case RIL_REQUEST_DATA_CALL_LIST:
            requestDataCallList(data, datalen, t);
            break;

        case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE:
            requestQueryNetworkSelectionMode(data, datalen, t);
            break;

        case RIL_REQUEST_OEM_HOOK_RAW:
            // echo back data
            RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);
            break;


        case RIL_REQUEST_OEM_HOOK_STRINGS: {
            int i;
            const char ** cur;

            LOGD("got OEM_HOOK_STRINGS: 0x%8p %lu", data, (long)datalen);


            for (i = (datalen / sizeof (char *)), cur = (const char **)data ;
                    i > 0 ; cur++, i --) {
                LOGD("> '%s'", *cur);
            }

            // echo back strings
            RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);
            break;
        }

        case RIL_REQUEST_WRITE_SMS_TO_SIM:
            requestWriteSmsToSim(data, datalen, t);
            break;

        case RIL_REQUEST_DELETE_SMS_ON_SIM: {
            char * cmd;
            p_response = NULL;
            asprintf(&cmd, "AT+CMGD=%d", ((int *)data)[0]);
            err = at_send_command(cmd, &p_response);
            free(cmd);
            if (err < 0 || p_response->success == 0) {
                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);
            } else {
                RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
            }
            at_response_free(p_response);
            break;
        }

        case RIL_REQUEST_ENTER_SIM_PIN:
        case RIL_REQUEST_ENTER_SIM_PUK:
        case RIL_REQUEST_ENTER_SIM_PIN2:
        case RIL_REQUEST_ENTER_SIM_PUK2:
        case RIL_REQUEST_CHANGE_SIM_PIN:
        case RIL_REQUEST_CHANGE_SIM_PIN2:
            requestEnterSimPin(data, datalen, t);
            break;

        default:
            RIL_onRequestComplete(t, RIL_E_REQUEST_NOT_SUPPORTED, NULL, 0);
            break;
    }
}

 

    rilEventAddWakeup(&s_commands_event);

    onNewCommandConnect();
}

 

 最后,就进入

 frameworks/base/telephony/java/com/android/internal/telephony/gsm/RIL.java

 

6.4、串口监听收到atd命令的应答"OK"或"nocarrier"等
readerLoop()
line = readline();
processLine(line);
   handleFinalResponse(line);
     pthread_cond_signal(&s_commandcond);//至此,前面的等待结束,接着执行RIL_onRequestComplete函数
6.5、java层收到应答后的处理,以dial为例子.
ril.java->RILReceiver.run()
   for(;;)
    {
     ...
     length = readRilMessage(is, buffer);
     p = Parcel.obtain();
    p.unmarshall(buffer, 0, length);
     p.setDataPosition(0);
    processResponse(p);
       type = p.readInt();
       if (type == RESPONSE_SOLICITED) {
         processSolicited (p);
           serial = p.readInt();
           rr = findAndRemoveRequestFromList(serial);
          rr.mResult.sendToTarget();
......
    }
CallTracker.java->handleMessage (Message msg)
   switch (msg.what) {
     case EVENT_OPERATION_COMPLETE:
       ar = (AsyncResult)msg.obj;
       operationComplete();
         cm.getCurrentCalls(lastRelevantPoll);
第二部分:unsolicited 消息从modem上报到java的流程。
  c++部份
readerLoop()
line = readline();
processLine(line);
   handleUnsolicited(line);
     if (s_unsolHandler != NULL) {
       s_unsolHandler (line1, line2);//实际执行的是voidonUnsolicited (const char *s, const char *sms_pdu)
         if (strStartsWith(s,"+CRING:")
                ||strStartsWith(s,"RING")
                || strStartsWith(s,"NOCARRIER")
                ||strStartsWith(s,"+CCWA")
         )
           RIL_onUnsolicitedResponse (RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED, NULL,0);
              p.writeInt32(RESPONSE_UNSOLICITED);
              p.writeInt32 (unsolResponse);
             ret =s_unsolResponses[unsolResponseIndex].responseFunction(p, data, datalen);
              ret = sendResponse(p);
                sendResponseRaw(p.data(),p.dataSize());
                  ret = blockingWrite(fd, (void*)&header, sizeof(header));
                  blockingWrite(fd, data,dataSize);
java部份
ril.java->RILReceiver.run()
   for(;;)

    {
     ...
     length = readRilMessage(is, buffer);
     p = Parcel.obtain();
     p.unmarshall(buffer, 0, length);
     p.setDataPosition(0);
     processResponse(p);
       processUnsolicited (p);
         response = p.readInt();
         switch(response) {
        ...
         case RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED: ret =  responseVoid(p); break;
         ...
         }
         switch(response) {
              caseRIL_UNSOL_RESPONSE_CALL_STATE_CHANGED:

                if (RILJ_LOGD)unsljLog(response);
                mCallStateRegistrants
                    .notifyRegistrants(newAsyncResult(null, null, null));
              ...
         }



这篇关于四--RIL层代码分析--整个电话来访过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926427

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P