开源项目实现简单实用的股票回测

2024-04-22 14:52

本文主要是介绍开源项目实现简单实用的股票回测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 引言

之前,尝试做股票工具一直想做的大而全,试图抓取长期的各个维度数据,然后统计或者训练模型。想把每个细节做到完美,结果却陷入了细节之中,最后烂尾了。

最近,听到大家分享了一些关于深度学习、时序模型、强化学习在股票预测方面的新论文。但是觉得这些理论与我们的实际操作还有很大的距离。目前好像更需要的是一些具体而实用的辅助工具。

这次,尝试用 50 行代码完成一个简单的股票回测工具。输入的数据是 A 股的股票代码和时间,通过工具抓取股票数据。然后编写了策略,并使用回测工具来展示策略在数据上的具体操作和盈亏。

具体使用场景如下:当我们想采用某种策略来操作某支股票时,可以选择想要购买的股票,或者选择与之类似的股票;然后,选择一个与当前大趋势相似的时段,用历史数据来验证这个策略是否可行,以及其可能带来的盈利效果。

你不会编写策略也没关系。这里使用的 backtrader 库自 2015 年就已经开源,相关资料丰富。一般的交易策略代码,编程机器人(如 gpt4, copilot)都能根据文字描述直接编写,只需要稍作修改即可。

2 工具介绍

这里采用了两种工具,一是用于抓取 A 股股票数据的 akshare,另一是用于回测的经典工具 backtrader。

2.1 backtrader

Backtrader 是 2015 年开源的 Python 量化回测框架。它的优点包括:资料丰富;整体结构良好,并提供许多常用的统计工具,用户可直接调用;功能相对单一,使用方法也较为简单。其缺点在于:已经停止更新很长时间,对新的库支持存在问题。我试用了其他几个开源框架,发现它们要么不够成熟,要么也已停更很久,暂时还没有找到更好的替代品。如果有朋友知道有更好的工具,希望能私信告诉我。

2.2 AkShare

仅用 210 行的 Python 代码,我们就可以实现对一段时间内日线,周线,分钟线等的抓取。这个程序的功能相当直观且简单,我们可以根据自己的需求进行修改。

2.3 具体实现

PYTHON

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import backtrader as bt
import matplotlib.pyplot as pltASHARE_PATH = '/opt/xieyan/git/Ashare/' # ashare的路径
import sys
if ASHARE_PATH not in sys.path:
sys.path.append(ASHARE_PATH)
from Ashare import *class SmaCross(bt.Strategy):params = dict(pfast=5,  # 短期均线周期pslow=10  # 长期均线周期)def __init__(self):sma1 = bt.ind.SMA(period=self.p.pfast)  # 短期均线sma2 = bt.ind.SMA(period=self.p.pslow)  # 长期均线self.crossover = bt.ind.CrossOver(sma1, sma2)  # 均线交叉信号# 这里里可以添加其他指标显示bt.indicators.MACDHisto(self.datas[0])def next(self):if not self.position:  # 还没有仓位if self.crossover > 0:  # 金叉self.buy()  # 买入print('Buying at', self.data.close[0])elif self.crossover < 0:  # 死叉self.close()  # 卖出print('Selling at', self.data.close[0])def get_dataframe():df=get_price('000538.XSHE',frequency='1d',count=60) # 以云南白药为例df.rename_axis('datetime', inplace=True)return dfif __name__ == '__main__':plt.plot([1,2,3,4])plt.show()cerebro = bt.Cerebro()cerebro.addstrategy(SmaCross)data = bt.feeds.PandasData(dataname=get_dataframe())cerebro.adddata(data)cerebro.addsizer(bt.sizers.FixedSize, stake=100) # 最小交易的单位cerebro.broker.setcash(10000.0) # 设置初始资金cerebro.broker.setcommission(commission=0.001) # 设置交易手续费print('初始金额: %.2f' % cerebro.broker.getvalue())cerebro.run()print('最终金额: %.2f' % cerebro.broker.getvalue())cerebro.plot(width=30, height=15, dpi=300, style='candlestick')

3 问题及解决

3.1 backtrader 绘图显示不出来

  • 现象:在进行绘图操作时,虽未出现错误,但在 jupyter 中无法显示图像。
  • 分析:这可能是由于 matplotlib 版本问题导致的。进一步追踪到 plot 函数内部,发现在绘图前先调用 plt 进行绘图,就可以正常显示了。
  • 解决方法:在调用 backtrader 库进行绘图前,先执行一次 plt 绘图。

PYTHON

1
2
3
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.show()

3.2 绘图时显示字体太大

  • 现象:绘图时由于字体太大,无法正常显示所有内容。
  • 分析:试图用 matplotlib plt params 设置字体大小,但不起作用;由于时间有限,就直接跟到库里,简单粗暴地修改了代码。
  • 解决方法:修改 backtrader/plot/plot.py 的 PInfo 类的 __init__ 函数,加入:

PYTHON

1
self.sch.subtxtsize = 6

4 思考

人的思考和判断是一个不断变化的过程,往往在事后回顾时,只留下些许碎片,无法完全重现当时的具体状态。此外,人对各个维度的趋势、行业前景以及政策的判断,很难直接用程序或数值来描述。因此,将策略详细地写出来,可以帮助进一步梳理和明确逻辑;这不仅可以用历史数据来验证策略的有效性,还能减少情绪的影响,进而实现实时监控和提醒。利用程序既可以节省时间,又可以监控更多情况,增加确定性,将程序的优势和人的优势结合起来。

5 相关资源

5.1 开源财经资源

  • akshare 项目地址:https://github.com/akfamily/akshare
  • akshare 教程:https://akshare.akfamily.xyz/data/stock/stock.html
  • 其它 A 股数据下载:https://github.com/gsyyysg/StockFormer
  • 其它 A 股数据下载:https://github.com/jrothschild33/learn_backtrader

5.2 backtrader

  • 项目地址:https://github.com/mementum/backtrader
  • 教程:https://github.com/jrothschild33/learn_backtrader
  • 使用示例:https://github.com/horacepei/qtbt
  • 使用说明:https://blog.csdn.net/zhouhy0903/article/details/119025551

这篇关于开源项目实现简单实用的股票回测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926084

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应