Redis底层数据结构之quicklist

2024-04-22 13:20

本文主要是介绍Redis底层数据结构之quicklist,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 一、概述
    • 二、quicklist结构
    • 三、quicklistNode结构
    • 四、优缺点

上一篇 redis底层数据结构之ziplist

一、概述

QuickList是由多个 ziplist 组成的双向链表,每个 ziplist 存储一定数量的元素。优点:结合了 ziplist 和双向链表的优点,既节省空间,又提升了修改操作的性能。使用场景: 在列表键元素较多或包含较大元素时使用。

在这里插入图片描述

ziplist补充(ziplist缺点-链式扩容&级联更新)
当一个entry被插入的时候,我们需要设置下一个entry中的prevlen字段为新插入entry的长度。会发生如下的情况:新插入entry的长度超过了254[>=254],那么下一个entry的prelen需要5个字节记录该长度,但是呢,此时下一个entry的prevlen字段此时只有一个字节,所以需要对下一个entry进行grown[扩容],更糟糕的是,下个entry因为扩容导致长度超过254,还会引起下下个entry的扩容…,这种现象呢就是级联更新,简单点来说就是,因为一个entry的插入导致之后的entry都需要重新扩容和记录前一个entry的prevlen现象称之为“级联更新”

从 Redis 6.2 版本开始,quicklist 的底层实现由原来的 ziplist 改为了 listpack。Listpack 是 ziplist 的升级版本,主要是为了解决ziplist中存在的一些问题,比如,ziplist中扩展元素长度时可能需要进行昂贵的重新分配操作。listpack 提供了更好的性能和内存使用效率,在保持与 ziplist 类似的密集存储方式的同时,允许更大的单个元素大小,并且有更强的扩展性。listpack和ziplist对象结构的不同是,listpack将prevlen替换为了curlen,从而有效避免级联更新。并将且将culen字段放在entry结构的最后面。这样做是为了,能够通过total-bytes定位到最后一个element的末尾位置然后获取到curlen从而找到前一个element的位置,从而实现从后往前遍历。

补充说明listpack和ziplist
参考博客 ziplist和listpack

  • ziplist包括三大部分,<头部,entry,尾部>。头部包含"zlbytes,zltail,zllen";尾部包含"zlend标记ziplist的结尾";entry包括"prevlen,encoding,entry_data"。由于prevlen记录方式存在级联更新的问题,小于254字节需要1字节内存,大于等于254字节需要5字节内存。
  • listpack包括三大部分,<头部,entry,尾部>。头部包含"zlbytes,zllen"相比与ziplist少了zltail;entry包括"encoding,entry_data,curlen";尾部包含"zlend标记listpack的结尾"。由于entry中的prevlen由curlen取代,所以不再有级联更新的问题。
  • 不论是"ziplist"还是"listpack"获取len的方式都是一样的:
    先判断头部中zllen字段存储的数值与UNIT16_MAX的关系
    小于UNIT16_MAX,直接返回zllen
    大于等于UNIT16_MAX需要从头到尾遍历获取元素总数
    如果新得到的元素总数小于UINT16_MAX,重新设置zllen的数值

二、quicklist结构

(直达源码–>src/quicklist.h)

基于listpack(V6.2)

/* quicklist is a 40 byte struct (on 64-bit systems) describing a quicklist.
* 'count' is the number of total entries.
* 'len' is the number of quicklist nodes.
* 'compress' is: 0 if compression disabled, otherwise it's the number
*                of quicklistNodes to leave uncompressed at ends of quicklist.
* 'fill' is the user-requested (or default) fill factor.
* 'bookmarks are an optional feature that is used by realloc this struct,
*      so that they don't consume memory when not used. */
typedef struct quicklist {quicklistNode *head;quicklistNode *tail;unsigned long count;        /* total count of all entries in all listpacks */unsigned long len;          /* number of quicklistNodes */signed int fill : QL_FILL_BITS;       /* fill factor for individual nodes */unsigned int compress : QL_COMP_BITS; /* depth of end nodes not to compress;0=off */unsigned int bookmark_count: QL_BM_BITS;quicklistBookmark bookmarks[];
} quicklist;

基于ziplist

typedef struct quicklist {// quicklist头结点quicklistNode *head;// quicklist 尾节点quicklistNode *tail;// 所有的ziplist中的entry总数量unsigned long count; /* total count of all entries in all ziplists */// ziplist节点数量unsigned long len;   /* number of quicklistNodes */// ziplist中entry的上限,默认为-2,和redis中配置的 list-max-ziplist-size 一致int fill : QL_FILL_BITS;  /* fill factor for individual nodes */// 首尾节点不压缩的个数,若设置为1,则首尾节点各有一节点不压缩;设置为0,则代表所有节点不压缩unsigned int compress : QL_COMP_BITS; /* depth of end nodes not to compress;0=off */// 内存重分配时的书签数量及数组,一般用不到unsigned int bookmark_count: QL_BM_BITS;quicklistBookmark bookmarks[];
} quicklist;

三、quicklistNode结构

基于listpack(V6.2)

/* quicklistNode is a 32 byte struct describing a listpack for a quicklist.
* We use bit fields keep the quicklistNode at 32 bytes.
* count: 16 bits, max 65536 (max lp bytes is 65k, so max count actually < 32k).
* encoding: 2 bits, RAW=1, LZF=2.
* container: 2 bits, PLAIN=1 (a single item as char array), PACKED=2 (listpack with multiple items).
* recompress: 1 bit, bool, true if node is temporary decompressed for usage.
* attempted_compress: 1 bit, boolean, used for verifying during testing.
* dont_compress: 1 bit, boolean, used for preventing compression of entry.
* extra: 9 bits, free for future use; pads out the remainder of 32 bits */
typedef struct quicklistNode {struct quicklistNode *prev;struct quicklistNode *next;unsigned char *entry;size_t sz;             /* entry size in bytes */unsigned int count : 16;     /* count of items in listpack */unsigned int encoding : 2;   /* RAW==1 or LZF==2 */unsigned int container : 2;  /* PLAIN==1 or PACKED==2 */unsigned int recompress : 1; /* was this node previous compressed? */unsigned int attempted_compress : 1; /* node can't compress; too small */unsigned int dont_compress : 1; /* prevent compression of entry that will be used later */unsigned int extra : 9; /* more bits to steal for future usage */
} quicklistNode;

基于ziplist

typedef struct quicklistNode {// 前一个节点(ziplist)指针struct quicklistNode *prev;// 后一个节点(ziplist)指针struct quicklistNode *next;// 当前节点ziplist指针unsigned char *zl;// 当前节点ziplist的字节大小,即zlbytesunsigned int sz;             /* ziplist size in bytes */// 当前节点ziplist中entry的数量unsigned int count : 16;     /* count of items in ziplist */// 编码方式:1-ziplist; 2-lzf压缩模式unsigned int encoding : 2;   /* RAW==1 or LZF==2 */// 数据容器类型:1-其他(预留扩展类型);2-ziplistunsigned int container : 2;  /* NONE==1 or ZIPLIST==2 */// 是否被压缩:1-说明被解压,将来要重新压缩。unsigned int recompress : 1; /* was this node previous compressed? */// 测试字段unsigned int attempted_compress : 1; /* node can't compress; too small */// 预留字段unsigned int extra : 10; /* more bits to steal for future usage */
} quicklistNode;

四、优缺点

优点:

  • 快表的节点大小固定,可以有效地避免内存碎片的发生。
  • 快表支持动态增加和删除节点,可以随着数据的增长而自动扩容或缩容,不需要预先分配空间。
  • 快表的节点采用ziplist的紧凑存储方式,使得节点访问和遍历的效率较高。同时,快表支持从头和尾部两个方向同时遍历节点。

缺点:

  • 快表的节点大小固定,如果节点中的元素数量较少,会造成一定的空间浪费。
  • 快表中的元素只能是整数或字节数组,不支持其他数据类型的存储。
  • 快表的插入和删除操作的效率较低,因为在插入或删除元素时,需要移动后面的元素,可能会导致大量的内存复制操作。如果需要频繁进行插入和删除操作,建议使用其他数据结构,例如链表。
  • 当快表中的元素数量较大时,遍历整个快表的效率也可能较低,因为快表是由多个节点组成的链表,需要依次遍历每个节点才能访问所有元素。

这篇关于Redis底层数据结构之quicklist的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925891

相关文章

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

《数据结构(C语言版)第二版》第八章-排序(8.3-交换排序、8.4-选择排序)

8.3 交换排序 8.3.1 冒泡排序 【算法特点】 (1) 稳定排序。 (2) 可用于链式存储结构。 (3) 移动记录次数较多,算法平均时间性能比直接插入排序差。当初始记录无序,n较大时, 此算法不宜采用。 #include <stdio.h>#include <stdlib.h>#define MAXSIZE 26typedef int KeyType;typedef char In

哈希表的底层实现(1)---C++版

目录 哈希表的基本原理 哈希表的优点 哈希表的缺点 应用场景 闭散列法 开散列法 开放定值法Open Addressing——线性探测的模拟实现 超大重点部分评析 链地址法Separate Chaining——哈希桶的模拟实现 哈希表(Hash Table)是一种数据结构,它通过将键(Key)映射到值(Value)的方式来实现快速的数据存储与查找。哈希表的核心概念是哈希

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

Lua 脚本在 Redis 中执行时的原子性以及与redis的事务的区别

在 Redis 中,Lua 脚本具有原子性是因为 Redis 保证在执行脚本时,脚本中的所有操作都会被当作一个不可分割的整体。具体来说,Redis 使用单线程的执行模型来处理命令,因此当 Lua 脚本在 Redis 中执行时,不会有其他命令打断脚本的执行过程。脚本中的所有操作都将连续执行,直到脚本执行完成后,Redis 才会继续处理其他客户端的请求。 Lua 脚本在 Redis 中原子性的原因

TL-Tomcat中长连接的底层源码原理实现

长连接:浏览器告诉tomcat不要将请求关掉。  如果不是长连接,tomcat响应后会告诉浏览器把这个连接关掉。    tomcat中有一个缓冲区  如果发送大批量数据后 又不处理  那么会堆积缓冲区 后面的请求会越来越慢。

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(