每日OJ题_其它背包问题②_力扣879. 盈利计划(二维费用01背包)

2024-04-22 09:52

本文主要是介绍每日OJ题_其它背包问题②_力扣879. 盈利计划(二维费用01背包),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

力扣879. 盈利计划

解析代码

代码优化


力扣879. 盈利计划

879. 盈利计划

难度 困难

集团里有 n 名员工,他们可以完成各种各样的工作创造利润。

第 i 种工作会产生 profit[i] 的利润,它要求 group[i] 名成员共同参与。如果成员参与了其中一项工作,就不能参与另一项工作。

工作的任何至少产生 minProfit 利润的子集称为 盈利计划 。并且工作的成员总数最多为 n 。

有多少种计划可以选择?因为答案很大,所以 返回结果模 10^9 + 7 的值

示例 1:

输入:n = 5, minProfit = 3, group = [2,2], profit = [2,3]
输出:2
解释:至少产生 3 的利润,该集团可以完成工作 0 和工作 1 ,或仅完成工作 1 。
总的来说,有两种计划。

示例 2:

输入:n = 10, minProfit = 5, group = [2,3,5], profit = [6,7,8]
输出:7
解释:至少产生 5 的利润,只要完成其中一种工作就行,所以该集团可以完成任何工作。
有 7 种可能的计划:(0),(1),(2),(0,1),(0,2),(1,2),以及 (0,1,2) 。

提示:

  • 1 <= n <= 100
  • 0 <= minProfit <= 100
  • 1 <= group.length <= 100
  • 1 <= group[i] <= 100
  • profit.length == group.length
  • 0 <= profit[i] <= 100
class Solution {
public:int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) {}
};

解析代码

        题目结合例子多读几遍,就会发现是一个经典二维费用的背包问题。因此可以仿照二维费用的背包问题来定义状态表示。

状态表示:dp[i][j][k] 表示:从前 i 个计划中挑选,总人数不超过 j ,总利润至少为 k ,一共有多少种选法。

        这道题里面出现了一个至少,和我们之前做过的背包问题不一样。因此在分析状态转移程的时候要结合实际情况考虑一下。

状态转移方程:

        线性 dp 状态转移方程分析方式,一般都是根据最后一步的状况,来分情况讨论。结合题目的要求,我们有选择最后一个元素或者不选择最后一个元素两种策略:

  • 不选 i 位置的计划:那我们只能去前 i - 1 个计划中挑选,总人数不超过 j ,总利润至少为 k 。此时一共有 dp[i - 1][j][k] 种选法
  • 选择 i 位置的计划:那我们在前 i - 1 个计划中挑选的时候,限制就变成了,总人数不超过 j - g[i] ,总利润至少为 k - p[i] 。此时一共有 dp[i - 1][j - g[i]] [k - p[i]] 。

第二种情况下有两个细节需要注意:

  1. j - g[i] < 0 :此时说明 g[i] 过大,也就是人数过多。因为我们的状态表示要 求人数是不能超过 j 的,因此这个状态是不合法的,需要舍去。
  2. k - p[i] < 0 :此时说明 p[i] 过大,也就是利润太高。但是利润高正是我 们想要的。所以这个状态不能舍去。但是问题来了,我们的 dp 表是没有负数的下标的,这就意味着这些状态我们无法表示。其实根本不需要负的下标,根据实际情况来看,如果这个任务的利润已经能够达标了,我们仅需在之前的任务中,挑选出 来的利润⾄至少为 0 就可以了。因为实际情况不允许我们是负利润,那么负利润就等价于利润至少为 0 的情况。所以说这种情况就等价于 dp[i][j][0] ,可以对 k - p[i] 的结果与 0 取一个 max 。

综上,状态转移方程为:dp[i][j][k] = dp[i - 1][j][k] + dp[i - 1][j - g[i - 1]][max(0, k - p[i - 1])] ;

初始化: 当没有任务的时候,利润为 0 ,此时无论人数限制为多少,都能找到一个空集的方案。 因此初始化 dp[0][j][0] 的位置为 1 ,其中 0 <= j <= n 

填表顺序: 保证第一维i 从小到大即可。

返回值: 根据状态表示,返回 dp[len][n][minProfit] ,其中 len 表示字符串数组的长度。

class Solution {
public:int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) {// dp[i][j][k] 表示:从前i个计划中挑选,总人数不超过j,总利润至少为k,一共有多少种选法const int MOD = 1e9 + 7; // 注意结果取模int len = group.size();vector<vector<vector<int>>> dp(len + 1, vector<vector<int>>(n + 1, vector<int>(minProfit + 1)));for(int j = 0; j <= n; j++){dp[0][j][0] = 1; // 初始化}for(int i = 1; i <= len; ++i){for(int j = 0; j <= n; ++j){for(int k = 0; k <= minProfit; ++k){dp[i][j][k] = dp[i - 1][j][k];if(j >= group[i - 1])dp[i][j][k] += dp[i - 1][j - group[i - 1]][max(0, k - profit[i - 1])];dp[i][j][k] %= MOD; // 注意结果取模}}}return dp[len][n][minProfit];}
};

代码优化

        所有的背包问题,都可以进行空间上的优化。 对于二维费用的 01 背包问题,优化还是和之前的01背包类似,删掉第一维,然后修改其他维度的遍历顺序:

class Solution {
public:int profitableSchemes(int n, int minProfit, vector<int>& group, vector<int>& profit) {// dp[i][j][k] 表示:从前i个计划中挑选,总人数不超过j,总利润至少为k,一共有多少种选法const int MOD = 1e9 + 7; // 注意结果取模int len = group.size();vector<vector<int>> dp(n + 1, vector<int>(minProfit + 1));for(int j = 0; j <= n; j++){dp[j][0] = 1; // 初始化}for(int i = 1; i <= len; ++i){for(int j = n; j >= group[i - 1]; --j){for(int k = minProfit; k >= 0; --k){dp[j][k] += dp[j - group[i - 1]][max(0, k - profit[i - 1])];dp[j][k] %= MOD; // 注意结果取模}}}return dp[n][minProfit];}
};

这篇关于每日OJ题_其它背包问题②_力扣879. 盈利计划(二维费用01背包)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925461

相关文章

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col