使用Python比较两张人脸图像并获得准确度

2024-04-21 23:04

本文主要是介绍使用Python比较两张人脸图像并获得准确度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用 Python、OpenCV 和人脸识别模块比较两张图像并获得这些图像之间的准确度水平。

一、原理

使用Face Recognition python 模块来获取两张图像的128 个面部编码,并比较这些编码。比较结果返回 True 或 False。如果结果为True ,那么两个图像将是相同的。如果是False,则两个图像将不相同。

二、128 种面部编码

仅当比较结果返回 True 值时,才会打印准确度级别。

三、实现

首先在conda中或终端安装需要的模块

pip install opencv-python
pip install face-recognition

安装后导入模块

创建一个名为 find_face_encodings(image_path) 的新函数,它获取图像位置(路径)并返回 128 个面部编码,这在比较图像时非常有用。

find_face_encodings(image_path) 函数将使用 OpenCV 模块,从我们作为参数传递的路径中读取图像,然后返回使用 face_recognition 模块中的 face_encodings() 函数获得的 128 个人脸编码。使用两个不同的图像路径调用 find_face_encodings(image_path) 函数,并将其存储在两个不同的变量中,image_1和image_2

import cv2
import face_recognition
def find_face_encodings(image_path):# reading imageimage = cv2.imread(image_path)# get face encodings from the imageface_enc = face_recognition.face_encodings(image)# return face encodingsreturn face_enc[0]
# getting face encodings for first image
image_1 = find_face_encodings("image_1.jpg")# getting face encodings for second image
image_2  = find_face_encodings("image_2.jpg")

现在,我们可以使用编码执行比较和查找这些图像的准确性等操作。

  • 比较将通过使用 face_recognition 中的 compare_faces() 函数来完成。

  • 通过找到 100 和 face_distance 之间的差异来确定准确性。

# checking both images are same
is_same = face_recognition.compare_faces([image_1], image_2)[0]
print(f"Is Same: {is_same}")
if is_same:# finding the distance level between imagesdistance = face_recognition.face_distance([image_1], image_2)distance = round(distance[0] * 100)# calcuating accuracy level between imagesaccuracy = 100 - round(distance)print("The images are same")print(f"Accuracy Level: {accuracy}%")
else:print("The images are not same")

参考链接:https://blog.csdn.net/woshicver/article/details/12860789

这篇关于使用Python比较两张人脸图像并获得准确度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924258

相关文章

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo