利用MATLAB理解常见概率分布

2024-04-21 21:08

本文主要是介绍利用MATLAB理解常见概率分布,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二项分布

在概率论和统计学中,二项分布(英语:Binomial
distribution)是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n= 1时,二项分布就是伯努利分布。二项分布是显著性差异的二项试验的基础。


>> N=100;
>> p=0.5;
>> k=0:N;
>>pdf=binopdf(k,N,p);
>> cdf=binocdf(k,N,p);
>> h=plotyy(k,pdf,k,cdf)

binopdf(k,N,p)函数
表示事件A发生k次的概论
N为实验次数,p为发生概率
binocdf(k,N,p)函数
表示事件A发生次数不大于k次的概率
plotyy(k,pdf,k,cdf)函数
plot只有一个纵坐标,而plotyy有两个纵坐标(左右各一个),两个纵坐标标度有利于图形数据的对比分析
在这里插入图片描述

泊松分布

泊松分布是二项分布n很大而p很小时的一种极限形式 二项分布是说,已知某件事情发生的概率是p,那么做n次试验,事情发生的次数就服从于二项分布。
泊松分布是指某段连续的时间内某件事情发生的次数,而且“某件事情”发生所用的时间是可以忽略的。
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。

维基百科:

X \displaystyle X X服从参数为 λ \displaystyle \lambda λ 的泊松分布,记为 X ∼ π ( λ ) X ∼ π ( λ ) \displaystyle X\sim \pi (\lambda )X \sim \pi(\lambda) Xπ(λ)Xπ(λ),或记为 X ∼ P ( λ ) X ∼ P ( λ ) \displaystyle X\sim P(\lambda )X \sim P(\lambda) XP(λ)XP(λ).
1、服从泊松分布的随机变量,其数学期望与方差相等,同为参数{\displaystyle \lambda }\lambda : {\displaystyle E(X)=V(X)=\lambda }{\displaystyle E(X)=V(X)=\lambda }

2、两个独立且服从泊松分布的随机变量,其和仍然服从泊松分布。更精确地说,若 X ∼ P o i s s o n ( λ 1 ) \displaystyle X\sim Poisson(\lambda _{1}) XPoisson(λ1) X ∼ P o i s s o n ( λ 1 ) \displaystyle X\sim Poisson(\lambda _{1}) XPoisson(λ1) Y ∼ P o i s s o n ( λ 2 ) \displaystyle Y\sim Poisson(\lambda _{2}) YPoisson(λ2) Y ∼ P o i s s o n ( λ 2 ) \displaystyle Y\sim Poisson(\lambda _{2}) YPoisson(λ2),则 X + Y ∼ P o i s s o n ( λ 1 + λ 2 ) \displaystyle X+Y\sim Poisson(\lambda _{1}+\lambda _{2}) X+YPoisson(λ1+λ2) X + Y ∼ P o i s s o n ( λ 1 + λ 2 ) \displaystyle X+Y\sim Poisson(\lambda _{1}+\lambda _{2}) X+YPoisson(λ1+λ2)

在二项分布的伯努利试验中,如果试验次数n很大,二项分布的概率p很小,且乘积λ= np比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物。

x=0:200;
px=poisspdf(x,100); 
plot(x,px)

表示已经观察到事物平均发生lambda次的条件下,实际发生X次的概率
在这里插入图片描述
是不是和二项分布很像?

均匀分布

在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。 均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。

均匀分布的期望:均匀分布的期望是取值区间[a,b]的中点(a+b)/2。
均匀分布的方差:var(x)=E[X²]-(E[X])²
var(x)=E[X²]-(E[X])²=1/3(a²+ab+ b²)-1/4(a+b)²=1/12(a²-2ab+ b²)=1/12(a-b)²

 x = rand(1000);
hist(x);
Ex = mean(x);
v = var(x);

在这里插入图片描述

指数分布

用一个知乎的简单解释:
(馒头那个太长就不抄了

可以用等公交车作为例子:
某个公交站台一个小时内出现了的公交车的数量 就用泊松分布来表示
某个公交站台任意两辆公交车出现的间隔时间 就用指数分布来表示

在这里插入图片描述
其中λ > 0是分布的一个参数,常被称为率参数(rate parameter)。即每单位时间内发生某事件的次数。指数分布的区间是[0,∞)。 如果一个随机变量X呈指数分布,则可以写作:X~ E(λ)。 [1]

>> x=0:0.2:20;
>> y1=exppdf(x,3);
y2=exppdf(x,5);
>> hold on;
plot(x,y1,'r');
plot(x,y2,'b');
>> 

hold on 和hold off 函数:
保留/删除上面的图像
exppdf()函数
产生指数分布的概率密度函数

我也来用馒头做一个解释(
比如x=0:0.2:20;
y1=exppdf(x,3);
已经观察到“馒头卖出”事件平均发生lambda次的条件下,实际发生X次的概率

这篇关于利用MATLAB理解常见概率分布的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924034

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Spring常见错误之Web嵌套对象校验失效解决办法

《Spring常见错误之Web嵌套对象校验失效解决办法》:本文主要介绍Spring常见错误之Web嵌套对象校验失效解决的相关资料,通过在Phone对象上添加@Valid注解,问题得以解决,需要的朋... 目录问题复现案例解析问题修正总结  问题复现当开发一个学籍管理系统时,我们会提供了一个 API 接口去

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的