输电线路运行特性及简单电力系统潮流估算(二)

2024-04-21 20:52

本文主要是介绍输电线路运行特性及简单电力系统潮流估算(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇为本科课程《电力系统稳态分析》的笔记。

本篇为这一章的第二篇笔记。上一篇传送门,下一篇传送门。

输电线路的运行特性

输电线路的空载运行特性

线路的等值电路如图所示。

在这里插入图片描述

由于是空载,则 S ~ 2 = 0 \widetilde{S}_2=0 S 2=0,可以计算出:
Δ S ~ Y 2 = U 2 2 ( − j B 2 ) = − j U 2 2 B 2 S ~ 2 ′ = S ~ 2 + Δ S ~ Y 2 = − j U 2 2 B 2 = P 2 ′ + j Q 2 ′ \Delta \widetilde{S}_{Y2}=U_2^2\left(-j\frac{B}{2}\right)=-j\frac{U_2^2B}{2}\\\\ \widetilde{S}_2'=\widetilde{S}_2+\Delta \widetilde{S}_{Y2}=-j\frac{U_2^2B}{2}=P_2'+jQ_2'\\\\ ΔS Y2=U22(j2B)=j2U22BS 2=S 2+ΔS Y2=j2U22B=P2+jQ2

则得到的 P 2 ′ = 0 , Q 2 ′ = − U 2 2 B 2 P_2'=0,Q_2'=-\frac{U_2^2B}{2} P2=0,Q2=2U22B

忽略线路的R和G,即为无损耗线路,则:
U ˙ 1 = U ˙ 2 + d U 2 = U ˙ 2 + Q 2 ′ X U 2 = U 2 − X B 2 U 2 \dot{U}_1=\dot{U}_2+\mathrm{d}U_2=\dot{U}_2+\frac{Q_2'X}{U_2}=U_2-\frac{XB}{2}U_2 U˙1=U˙2+dU2=U˙2+U2Q2X=U22XBU2

由于线路的B是大于零的,所以可以得出结论 U 1 < U 2 U_1<U_2 U1<U2,说明空载的情况下,线路末端的电压会高于线路始端的电压,这就叫做输电线路空载的末端电压升高现象,即末端翘尾现象。

已知线路的单位阻抗 x 0 = 0.1445 lg ⁡ D m r x_0=0.1445\lg\frac{D_m}{r} x0=0.1445lgrDm和导纳 b 0 = 7.58 × 1 0 − 6 1 lg ⁡ D m r b_0=7.58\times10^{-6}\frac{1}{\lg\frac{D_m}{r}} b0=7.58×106lgrDm1,所以得到首末两端的电压差为: Δ U = − x 0 b 0 2 l 2 U 2 = − K l 2 U 2 \Delta U=-\frac{x_0b_0}{2}l^2U_2=-Kl^2U_2 ΔU=2x0b0l2U2=Kl2U2

其中,l是线路的长度,K是一个可以算得的数,可见线路越长,电压差就越大,且电压差和长度的平方成正比。

如果线路更长,就需要用到以前推导过得方程,即已知末端电压和末端电流,求首端电压和首端电流:
U ˙ 1 = U ˙ 2 cosh ⁡ Γ l + I ˙ 2 Z c sinh ⁡ Γ l \dot{U}_1=\dot{U}_2\cosh\Gamma l+\dot{I}_2Z_c\sinh\Gamma l U˙1=U˙2coshΓl+I˙2ZcsinhΓl

由于末端空载,也就是电流为零,则关系式化为:
U ˙ 1 = U ˙ 2 cosh ⁡ Γ l \dot{U}_1=\dot{U}_2\cosh\Gamma l U˙1=U˙2coshΓl

在忽略R和G的情况下,即无损 α = 0 \alpha=0 α=0,有 Γ = z 0 y 0 = j x 0 j b 0 = j x 0 b 0 = j β \Gamma=\sqrt{z_0y_0}=\sqrt{jx_0jb_0}=j\sqrt{x_0b_0}=j\beta Γ=z0y0 =jx0jb0 =jx0b0 =jβ,上式化为:
U 1 = U 2 cosh ⁡ j β l = U 2 cos ⁡ β l U_1=U_2\cosh j\beta l=U_2\cos \beta l U1=U2coshjβl=U2cosβl

上式就是空载电压和线路长度的关系。计算情况下,当 β l = π 2 \beta l=\frac{\pi}{2} βl=2π时, U 1 = 0 U_1=0 U1=0,这说明即便是首端电压 U 1 = 0 U_1=0 U1=0,也可以让末端得到给定的电压 U 2 U_2 U2。这就是相当于发生了谐振,其线路长度约为波长的四分之一。

输电线路在轻载的情况

线路等值电路如图所示。轻载意味着有负载,但是功率很低,假设末端功率 S ~ 2 = P + j Q \widetilde{S}_2=P+jQ S 2=P+jQ

在这里插入图片描述

首端电压 U 1 U_1 U1和末端电压 U 2 U_2 U2的数值关系式计算不发生变化:
U 1 = ( 1 − X B 2 ) U 2 ⇒ U 2 = U 1 1 − X B 2 U_1=\left(1-\frac{XB}{2}\right)U_2\\\\ \Rightarrow U_2=\frac{U_1}{1-\frac{XB}{2}} U1=(12XB)U2U2=12XBU1

可以计算出 S ~ 2 ′ = S ~ B + S ~ 2 \widetilde{S}_2'=\widetilde{S}_B+\widetilde{S}_2 S 2=S B+S 2,即:
P ′ = P Q ′ = − U 2 2 B + Q P'=P\\\\ Q'=-U_2^2B+Q P=PQ=U22B+Q

可得:
d U ˙ 2 = Q ′ X U 2 + j P ′ X U 2 = − U 2 2 B + Q U 2 + j P X U 2 \mathrm{d}\dot{U}_2=\frac{Q'X}{U_2}+j\frac{P'X}{U_2}=\frac{-U_2^2B+Q}{U_2}+j\frac{PX}{U_2} dU˙2=U2QX+jU2PX=U2U22B+Q+jU2PX

因为有关系 U ˙ 1 = U ˙ 2 + d U ˙ 2 \dot{U}_1=\dot{U}_2+\mathrm{d}\dot{U}_2 U˙1=U˙2+dU˙2,所以可以画出如下图的向量示意图。

得到结论: U 1 < U 2 U_1<U_2 U1<U2,还是会发生翘尾现象,解决方法是,并联电抗器,即并补。

输电线路的传输功率极限

第一种方法

忽略所有的并联支路,只留下一个串联支路,如图所示。

在这里插入图片描述

得到传输功率的表达式:
P + j Q = U ˙ 2 I ˙ ∗ = U ˙ 2 ( U ˙ 1 − U ˙ 2 R + j X ) ∗ = U ˙ 2 U ˙ 1 ∗ − U ˙ 2 ∗ R − j X R + j X R + j X = U ˙ 2 U ˙ 1 ∗ − U 2 2 R 2 + X 2 ( R + j X ) P+jQ=\dot{U}_2\dot{I}^*=\dot{U}_2\left(\frac{\dot{U}_1-\dot{U}_2}{R+jX}\right)^*=\dot{U}_2\frac{\dot{U}_1^*-\dot{U}_2^*}{R-jX}\frac{R+jX}{R+jX}\\\\ =\frac{\dot{U}_2\dot{U}_1^*-U_2^2}{R^2+X^2}(R+jX) P+jQ=U˙2I˙=U˙2(R+jXU˙1U˙2)=U˙2RjXU˙1U˙2R+jXR+jX=R2+X2U˙2U˙1U22(R+jX)

U ˙ 1 = U 1 ∠ θ 1 , U ˙ 2 = U 2 ∠ θ 2 , δ = θ 1 − θ 2 \dot{U}_1=U_1\angle\theta_1,\dot{U}_2=U_2\angle\theta_2,\delta=\theta_1-\theta_2 U˙1=U1θ1,U˙2=U2θ2,δ=θ1θ2。则可得:
P + j Q = U 2 ∠ θ 2 ⋅ U 1 ∠ ( − θ 1 ) − U 2 2 R 2 + X 2 ( R + j X ) = U 1 U 2 ( cos ⁡ δ − j sin ⁡ δ ) − U 2 2 R 2 + X 2 ( R + j X ) P+jQ=\frac{U_2 \angle \theta_2 \cdot U_1\angle(-\theta_1)-U_2^2}{R^2+X^2}(R+jX)=\frac{U_1U_2(\cos\delta-j\sin\delta)-U_2^2}{R^2+X^2}(R+jX) P+jQ=R2+X2U2θ2U1(θ1)U22(R+jX)=R2+X2U1U2(cosδjsinδ)U22(R+jX)

假设是无损耗线路,则 R = 0 R=0 R=0,所以化简上式可得:
P = U 1 U 2 X sin ⁡ δ Q = U 2 X ( U 1 cos ⁡ δ − U 2 ) P=\frac{U_1U_2}{X}\sin\delta\\\\ Q=\frac{U_2}{X}(U_1\cos\delta-U_2) P=XU1U2sinδQ=XU2(U1cosδU2)

所以可从三角函数的最大值得到最大传输功率 P m a x = U 1 U 2 X P_{max}=\frac{U_1U_2}{X} Pmax=XU1U2

第二种方法

忽略所有的并联支路和电阻,只留下一个串联电抗,如图所示。

在这里插入图片描述

可以导出首端电压为,取末端电压 U ˙ 2 \dot{U}_2 U˙2为参考向量:
U ˙ 1 = U ˙ 2 + d U ˙ 2 = ( U 2 + Q 2 X U 2 ) + j P 2 X U 2 \dot{U}_1=\dot{U}_2+\mathrm{d}\dot{U}_2=\left(U_2+\frac{Q_2X}{U_2}\right)+j\frac{P_2X}{U_2} U˙1=U˙2+dU˙2=(U2+U2Q2X)+jU2P2X

令线路始端电压为:
U ˙ 1 = U 1 ∠ θ = U 1 ( cos ⁡ θ + j sin ⁡ θ ) \dot{U}_1=U_1\angle\theta=U_1(\cos\theta+j\sin\theta) U˙1=U1θ=U1(cosθ+jsinθ)

比较上述两式的虚部,可得下面的等式:
P 2 X U 2 = U 1 sin ⁡ θ \frac{P_2X}{U_2}=U_1\sin\theta U2P2X=U1sinθ
变换后可得输出功率的大小为:
P 2 = U 1 U 2 X sin ⁡ δ P_2=\frac{U_1U_2}{X}\sin\delta P2=XU1U2sinδ

如图所示就是输电线路传输功率和两端电压的相位差之间的关系图,是一个三角函数曲线。在 θ = π 2 \theta=\frac{\pi}{2} θ=2π处取得最大值。但实际中的 θ \theta θ很小,约为15°到30°,所以实际中 P ≪ P m a x P\ll P_{max} PPmax

在这里插入图片描述

想要提高传输功率,可以:

  1. 提高线路的电压等级,采用更高一级的额定电压。
  2. 减小线路的电抗。
    • 采用分裂导线。相当于并联电抗。
    • 线路上串联电容器,用其容抗抵消线路的一些感抗。

输电线路的功率圆圈

线路的运行有这几个要求:

  • 两个电压约束
    U 1 − U 2 U N × 100 % < 10 % Δ U = P R + Q X U < 10 % \frac{U_1-U_2}{U_N}\times 100\%<10\%\\\\ \Delta U=\frac{PR+QX}{U}<10\% UNU1U2×100%<10%ΔU=UPR+QX<10%
  • 热稳定约束,即 I 2 R I^2R I2R不能大。

下图就是线路的等值电路图,忽略了并联支路。

在这里插入图片描述

首先使用有名值计算:
U ˙ 1 − U ˙ 2 = 3 I ˙ ( P + j X ) \dot{U}_1-\dot{U}_2=\sqrt{3}\dot{I}(P+jX) U˙1U˙2=3 I˙(P+jX)

因为 S ~ = 3 U ˙ I ˙ ∗ \widetilde{S}=\sqrt{3}\dot{U}\dot{I}^* S =3 U˙I˙,所以有:
U ˙ 1 − U ˙ 2 = ( S U 2 ) ∗ Z \dot{U}_1-\dot{U}_2=\left(\frac{S}{U_2}\right)^*Z U˙1U˙2=(U2S)Z

对于复数量,有: S ~ = S ∠ ϕ = P + j Q , Z = ∣ Z ∣ ∠ ϕ Z = R + j X \widetilde{S}=S\angle \phi=P+jQ,Z=|Z|\angle\phi_Z=R+jX S =Sϕ=P+jQ,Z=Z∣∠ϕZ=R+jX

则继续化上式为:
d U ˙ = U ˙ 1 − U ˙ 2 = S Z U 2 ∗ ∠ ϕ Z − ϕ \mathrm{d}\dot{U}=\dot{U}_1-\dot{U}_2=\frac{SZ}{U_2^*}\angle\phi_Z-\phi dU˙=U˙1U˙2=U2SZϕZϕ

在标幺制下进行运算。先选择基准值: U B = U N , S B = U N 2 Z , Z B = Z U_B=U_N,S_B=\frac{U_N^2}{Z},Z_B=Z UB=UN,SB=ZUN2,ZB=Z
d U ˙ ∗ = S ∗ U 2 ∗ ∗ ∠ ϕ Z − ϕ \mathrm{d}\dot{U}_*=\frac{S_*}{U_{2*}^*}\angle\phi_Z-\phi dU˙=U2SϕZϕ

由于末端电压接近于额定电压,所以 U 2 ∗ U_{2*} U2接近于1,则可以做出下面的近似:
d U ˙ ∗ ≈ S ∗ ∠ ϕ Z − ϕ = ∠ ϕ Z ( S ∗ cos ⁡ ϕ − j S ∗ sin ⁡ ϕ ) = ∠ ϕ Z ( P ∗ − j Q ∗ ) = ∠ ϕ Z P ∗ − ∠ ( ϕ Z − π 2 ) Q ∗ \mathrm{d}\dot{U}_*\approx S_*\angle\phi_Z-\phi=\angle\phi_Z(S_*\cos\phi-jS_*\sin\phi)=\angle\phi_Z(P_*-jQ_*)=\angle\phi_ZP_*-\angle(\phi_Z-\frac{\pi}{2})Q_*\\\\ dU˙SϕZϕ=ϕZ(ScosϕjSsinϕ)=ϕZ(PjQ)=ϕZP(ϕZ2π)Q

另外可以求出 ∣ d U ˙ ∗ ∣ |\mathrm{d}\dot{U}_*| dU˙
∣ d U ˙ ∗ ∣ = ∣ S ∗ ∣ = P ∗ 2 + Q ∗ 2 o r ∣ d U ˙ ∗ ∣ = ∣ S ∗ ∣ = ∣ I ˙ ∗ ∗ U 2 ∗ ∣ ≈ ∣ I ˙ ∗ ∣ |\mathrm{d}\dot{U}_*|=|S_*|=\sqrt{P_*^2+Q_*^2}\\\\ or\quad |\mathrm{d}\dot{U}_*|=|S_*|=|\dot{I}_*^*U_{2*}|\approx|\dot{I}_*| dU˙=S=P2+Q2 ordU˙=S=I˙U2I˙

由于有热稳定要求,即 I 2 R < η ⇒ I 2 < η R ⇒ ∣ d U ˙ ∗ ∣ 2 < η R I^2R<\eta\Rightarrow I^2<\frac{\eta}{R}\Rightarrow |\mathrm{d}\dot{U}_*|^2<\frac{\eta}{R} I2R<ηI2<RηdU˙2<Rη,这说明热稳定的约束是一个圆区域,这个圆的圆心是 U ˙ 2 \dot{U}_2 U˙2向量的终点。

另外再画出电压约束,要求电压降落<10%,还要要求 ∣ U ˙ 2 ∗ ∣ > 0.9 |\dot{U}_{2*}|>0.9 U˙2>0.9,则这两个圆弧都是以 U ˙ 2 \dot{U}_2 U˙2向量的起点为圆心的。

三个区域的重叠部分就是系统允许的运行位置。

这篇关于输电线路运行特性及简单电力系统潮流估算(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/924011

相关文章

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

新特性抢先看! Ubuntu 25.04 Beta 发布:Linux 6.14 内核

《新特性抢先看!Ubuntu25.04Beta发布:Linux6.14内核》Canonical公司近日发布了Ubuntu25.04Beta版,这一版本被赋予了一个活泼的代号——“Plu... Canonical 昨日(3 月 27 日)放出了 Beta 版 Ubuntu 25.04 系统镜像,代号“Pluc

如何使用Python实现一个简单的window任务管理器

《如何使用Python实现一个简单的window任务管理器》这篇文章主要为大家详细介绍了如何使用Python实现一个简单的window任务管理器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 任务管理器效果图完整代码import tkinter as tkfrom tkinter i

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Java终止正在运行的线程的三种方法

《Java终止正在运行的线程的三种方法》停止一个线程意味着在任务处理完任务之前停掉正在做的操作,也就是放弃当前的操作,停止一个线程可以用Thread.stop()方法,但最好不要用它,本文给大家介绍了... 目录前言1. 停止不了的线程2. 判断线程是否停止状态3. 能停止的线程–异常法4. 在沉睡中停止5

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

在VSCode中本地运行DeepSeek的流程步骤

《在VSCode中本地运行DeepSeek的流程步骤》本文详细介绍了如何在本地VSCode中安装和配置Ollama和CodeGPT,以使用DeepSeek进行AI编码辅助,无需依赖云服务,需要的朋友可... 目录步骤 1:在 VSCode 中安装 Ollama 和 CodeGPT安装Ollama下载Olla

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.