输电线路运行特性及简单电力系统潮流估算(二)

2024-04-21 20:52

本文主要是介绍输电线路运行特性及简单电力系统潮流估算(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇为本科课程《电力系统稳态分析》的笔记。

本篇为这一章的第二篇笔记。上一篇传送门,下一篇传送门。

输电线路的运行特性

输电线路的空载运行特性

线路的等值电路如图所示。

在这里插入图片描述

由于是空载,则 S ~ 2 = 0 \widetilde{S}_2=0 S 2=0,可以计算出:
Δ S ~ Y 2 = U 2 2 ( − j B 2 ) = − j U 2 2 B 2 S ~ 2 ′ = S ~ 2 + Δ S ~ Y 2 = − j U 2 2 B 2 = P 2 ′ + j Q 2 ′ \Delta \widetilde{S}_{Y2}=U_2^2\left(-j\frac{B}{2}\right)=-j\frac{U_2^2B}{2}\\\\ \widetilde{S}_2'=\widetilde{S}_2+\Delta \widetilde{S}_{Y2}=-j\frac{U_2^2B}{2}=P_2'+jQ_2'\\\\ ΔS Y2=U22(j2B)=j2U22BS 2=S 2+ΔS Y2=j2U22B=P2+jQ2

则得到的 P 2 ′ = 0 , Q 2 ′ = − U 2 2 B 2 P_2'=0,Q_2'=-\frac{U_2^2B}{2} P2=0,Q2=2U22B

忽略线路的R和G,即为无损耗线路,则:
U ˙ 1 = U ˙ 2 + d U 2 = U ˙ 2 + Q 2 ′ X U 2 = U 2 − X B 2 U 2 \dot{U}_1=\dot{U}_2+\mathrm{d}U_2=\dot{U}_2+\frac{Q_2'X}{U_2}=U_2-\frac{XB}{2}U_2 U˙1=U˙2+dU2=U˙2+U2Q2X=U22XBU2

由于线路的B是大于零的,所以可以得出结论 U 1 < U 2 U_1<U_2 U1<U2,说明空载的情况下,线路末端的电压会高于线路始端的电压,这就叫做输电线路空载的末端电压升高现象,即末端翘尾现象。

已知线路的单位阻抗 x 0 = 0.1445 lg ⁡ D m r x_0=0.1445\lg\frac{D_m}{r} x0=0.1445lgrDm和导纳 b 0 = 7.58 × 1 0 − 6 1 lg ⁡ D m r b_0=7.58\times10^{-6}\frac{1}{\lg\frac{D_m}{r}} b0=7.58×106lgrDm1,所以得到首末两端的电压差为: Δ U = − x 0 b 0 2 l 2 U 2 = − K l 2 U 2 \Delta U=-\frac{x_0b_0}{2}l^2U_2=-Kl^2U_2 ΔU=2x0b0l2U2=Kl2U2

其中,l是线路的长度,K是一个可以算得的数,可见线路越长,电压差就越大,且电压差和长度的平方成正比。

如果线路更长,就需要用到以前推导过得方程,即已知末端电压和末端电流,求首端电压和首端电流:
U ˙ 1 = U ˙ 2 cosh ⁡ Γ l + I ˙ 2 Z c sinh ⁡ Γ l \dot{U}_1=\dot{U}_2\cosh\Gamma l+\dot{I}_2Z_c\sinh\Gamma l U˙1=U˙2coshΓl+I˙2ZcsinhΓl

由于末端空载,也就是电流为零,则关系式化为:
U ˙ 1 = U ˙ 2 cosh ⁡ Γ l \dot{U}_1=\dot{U}_2\cosh\Gamma l U˙1=U˙2coshΓl

在忽略R和G的情况下,即无损 α = 0 \alpha=0 α=0,有 Γ = z 0 y 0 = j x 0 j b 0 = j x 0 b 0 = j β \Gamma=\sqrt{z_0y_0}=\sqrt{jx_0jb_0}=j\sqrt{x_0b_0}=j\beta Γ=z0y0 =jx0jb0 =jx0b0 =jβ,上式化为:
U 1 = U 2 cosh ⁡ j β l = U 2 cos ⁡ β l U_1=U_2\cosh j\beta l=U_2\cos \beta l U1=U2coshjβl=U2cosβl

上式就是空载电压和线路长度的关系。计算情况下,当 β l = π 2 \beta l=\frac{\pi}{2} βl=2π时, U 1 = 0 U_1=0 U1=0,这说明即便是首端电压 U 1 = 0 U_1=0 U1=0,也可以让末端得到给定的电压 U 2 U_2 U2。这就是相当于发生了谐振,其线路长度约为波长的四分之一。

输电线路在轻载的情况

线路等值电路如图所示。轻载意味着有负载,但是功率很低,假设末端功率 S ~ 2 = P + j Q \widetilde{S}_2=P+jQ S 2=P+jQ

在这里插入图片描述

首端电压 U 1 U_1 U1和末端电压 U 2 U_2 U2的数值关系式计算不发生变化:
U 1 = ( 1 − X B 2 ) U 2 ⇒ U 2 = U 1 1 − X B 2 U_1=\left(1-\frac{XB}{2}\right)U_2\\\\ \Rightarrow U_2=\frac{U_1}{1-\frac{XB}{2}} U1=(12XB)U2U2=12XBU1

可以计算出 S ~ 2 ′ = S ~ B + S ~ 2 \widetilde{S}_2'=\widetilde{S}_B+\widetilde{S}_2 S 2=S B+S 2,即:
P ′ = P Q ′ = − U 2 2 B + Q P'=P\\\\ Q'=-U_2^2B+Q P=PQ=U22B+Q

可得:
d U ˙ 2 = Q ′ X U 2 + j P ′ X U 2 = − U 2 2 B + Q U 2 + j P X U 2 \mathrm{d}\dot{U}_2=\frac{Q'X}{U_2}+j\frac{P'X}{U_2}=\frac{-U_2^2B+Q}{U_2}+j\frac{PX}{U_2} dU˙2=U2QX+jU2PX=U2U22B+Q+jU2PX

因为有关系 U ˙ 1 = U ˙ 2 + d U ˙ 2 \dot{U}_1=\dot{U}_2+\mathrm{d}\dot{U}_2 U˙1=U˙2+dU˙2,所以可以画出如下图的向量示意图。

得到结论: U 1 < U 2 U_1<U_2 U1<U2,还是会发生翘尾现象,解决方法是,并联电抗器,即并补。

输电线路的传输功率极限

第一种方法

忽略所有的并联支路,只留下一个串联支路,如图所示。

在这里插入图片描述

得到传输功率的表达式:
P + j Q = U ˙ 2 I ˙ ∗ = U ˙ 2 ( U ˙ 1 − U ˙ 2 R + j X ) ∗ = U ˙ 2 U ˙ 1 ∗ − U ˙ 2 ∗ R − j X R + j X R + j X = U ˙ 2 U ˙ 1 ∗ − U 2 2 R 2 + X 2 ( R + j X ) P+jQ=\dot{U}_2\dot{I}^*=\dot{U}_2\left(\frac{\dot{U}_1-\dot{U}_2}{R+jX}\right)^*=\dot{U}_2\frac{\dot{U}_1^*-\dot{U}_2^*}{R-jX}\frac{R+jX}{R+jX}\\\\ =\frac{\dot{U}_2\dot{U}_1^*-U_2^2}{R^2+X^2}(R+jX) P+jQ=U˙2I˙=U˙2(R+jXU˙1U˙2)=U˙2RjXU˙1U˙2R+jXR+jX=R2+X2U˙2U˙1U22(R+jX)

U ˙ 1 = U 1 ∠ θ 1 , U ˙ 2 = U 2 ∠ θ 2 , δ = θ 1 − θ 2 \dot{U}_1=U_1\angle\theta_1,\dot{U}_2=U_2\angle\theta_2,\delta=\theta_1-\theta_2 U˙1=U1θ1,U˙2=U2θ2,δ=θ1θ2。则可得:
P + j Q = U 2 ∠ θ 2 ⋅ U 1 ∠ ( − θ 1 ) − U 2 2 R 2 + X 2 ( R + j X ) = U 1 U 2 ( cos ⁡ δ − j sin ⁡ δ ) − U 2 2 R 2 + X 2 ( R + j X ) P+jQ=\frac{U_2 \angle \theta_2 \cdot U_1\angle(-\theta_1)-U_2^2}{R^2+X^2}(R+jX)=\frac{U_1U_2(\cos\delta-j\sin\delta)-U_2^2}{R^2+X^2}(R+jX) P+jQ=R2+X2U2θ2U1(θ1)U22(R+jX)=R2+X2U1U2(cosδjsinδ)U22(R+jX)

假设是无损耗线路,则 R = 0 R=0 R=0,所以化简上式可得:
P = U 1 U 2 X sin ⁡ δ Q = U 2 X ( U 1 cos ⁡ δ − U 2 ) P=\frac{U_1U_2}{X}\sin\delta\\\\ Q=\frac{U_2}{X}(U_1\cos\delta-U_2) P=XU1U2sinδQ=XU2(U1cosδU2)

所以可从三角函数的最大值得到最大传输功率 P m a x = U 1 U 2 X P_{max}=\frac{U_1U_2}{X} Pmax=XU1U2

第二种方法

忽略所有的并联支路和电阻,只留下一个串联电抗,如图所示。

在这里插入图片描述

可以导出首端电压为,取末端电压 U ˙ 2 \dot{U}_2 U˙2为参考向量:
U ˙ 1 = U ˙ 2 + d U ˙ 2 = ( U 2 + Q 2 X U 2 ) + j P 2 X U 2 \dot{U}_1=\dot{U}_2+\mathrm{d}\dot{U}_2=\left(U_2+\frac{Q_2X}{U_2}\right)+j\frac{P_2X}{U_2} U˙1=U˙2+dU˙2=(U2+U2Q2X)+jU2P2X

令线路始端电压为:
U ˙ 1 = U 1 ∠ θ = U 1 ( cos ⁡ θ + j sin ⁡ θ ) \dot{U}_1=U_1\angle\theta=U_1(\cos\theta+j\sin\theta) U˙1=U1θ=U1(cosθ+jsinθ)

比较上述两式的虚部,可得下面的等式:
P 2 X U 2 = U 1 sin ⁡ θ \frac{P_2X}{U_2}=U_1\sin\theta U2P2X=U1sinθ
变换后可得输出功率的大小为:
P 2 = U 1 U 2 X sin ⁡ δ P_2=\frac{U_1U_2}{X}\sin\delta P2=XU1U2sinδ

如图所示就是输电线路传输功率和两端电压的相位差之间的关系图,是一个三角函数曲线。在 θ = π 2 \theta=\frac{\pi}{2} θ=2π处取得最大值。但实际中的 θ \theta θ很小,约为15°到30°,所以实际中 P ≪ P m a x P\ll P_{max} PPmax

在这里插入图片描述

想要提高传输功率,可以:

  1. 提高线路的电压等级,采用更高一级的额定电压。
  2. 减小线路的电抗。
    • 采用分裂导线。相当于并联电抗。
    • 线路上串联电容器,用其容抗抵消线路的一些感抗。

输电线路的功率圆圈

线路的运行有这几个要求:

  • 两个电压约束
    U 1 − U 2 U N × 100 % < 10 % Δ U = P R + Q X U < 10 % \frac{U_1-U_2}{U_N}\times 100\%<10\%\\\\ \Delta U=\frac{PR+QX}{U}<10\% UNU1U2×100%<10%ΔU=UPR+QX<10%
  • 热稳定约束,即 I 2 R I^2R I2R不能大。

下图就是线路的等值电路图,忽略了并联支路。

在这里插入图片描述

首先使用有名值计算:
U ˙ 1 − U ˙ 2 = 3 I ˙ ( P + j X ) \dot{U}_1-\dot{U}_2=\sqrt{3}\dot{I}(P+jX) U˙1U˙2=3 I˙(P+jX)

因为 S ~ = 3 U ˙ I ˙ ∗ \widetilde{S}=\sqrt{3}\dot{U}\dot{I}^* S =3 U˙I˙,所以有:
U ˙ 1 − U ˙ 2 = ( S U 2 ) ∗ Z \dot{U}_1-\dot{U}_2=\left(\frac{S}{U_2}\right)^*Z U˙1U˙2=(U2S)Z

对于复数量,有: S ~ = S ∠ ϕ = P + j Q , Z = ∣ Z ∣ ∠ ϕ Z = R + j X \widetilde{S}=S\angle \phi=P+jQ,Z=|Z|\angle\phi_Z=R+jX S =Sϕ=P+jQ,Z=Z∣∠ϕZ=R+jX

则继续化上式为:
d U ˙ = U ˙ 1 − U ˙ 2 = S Z U 2 ∗ ∠ ϕ Z − ϕ \mathrm{d}\dot{U}=\dot{U}_1-\dot{U}_2=\frac{SZ}{U_2^*}\angle\phi_Z-\phi dU˙=U˙1U˙2=U2SZϕZϕ

在标幺制下进行运算。先选择基准值: U B = U N , S B = U N 2 Z , Z B = Z U_B=U_N,S_B=\frac{U_N^2}{Z},Z_B=Z UB=UN,SB=ZUN2,ZB=Z
d U ˙ ∗ = S ∗ U 2 ∗ ∗ ∠ ϕ Z − ϕ \mathrm{d}\dot{U}_*=\frac{S_*}{U_{2*}^*}\angle\phi_Z-\phi dU˙=U2SϕZϕ

由于末端电压接近于额定电压,所以 U 2 ∗ U_{2*} U2接近于1,则可以做出下面的近似:
d U ˙ ∗ ≈ S ∗ ∠ ϕ Z − ϕ = ∠ ϕ Z ( S ∗ cos ⁡ ϕ − j S ∗ sin ⁡ ϕ ) = ∠ ϕ Z ( P ∗ − j Q ∗ ) = ∠ ϕ Z P ∗ − ∠ ( ϕ Z − π 2 ) Q ∗ \mathrm{d}\dot{U}_*\approx S_*\angle\phi_Z-\phi=\angle\phi_Z(S_*\cos\phi-jS_*\sin\phi)=\angle\phi_Z(P_*-jQ_*)=\angle\phi_ZP_*-\angle(\phi_Z-\frac{\pi}{2})Q_*\\\\ dU˙SϕZϕ=ϕZ(ScosϕjSsinϕ)=ϕZ(PjQ)=ϕZP(ϕZ2π)Q

另外可以求出 ∣ d U ˙ ∗ ∣ |\mathrm{d}\dot{U}_*| dU˙
∣ d U ˙ ∗ ∣ = ∣ S ∗ ∣ = P ∗ 2 + Q ∗ 2 o r ∣ d U ˙ ∗ ∣ = ∣ S ∗ ∣ = ∣ I ˙ ∗ ∗ U 2 ∗ ∣ ≈ ∣ I ˙ ∗ ∣ |\mathrm{d}\dot{U}_*|=|S_*|=\sqrt{P_*^2+Q_*^2}\\\\ or\quad |\mathrm{d}\dot{U}_*|=|S_*|=|\dot{I}_*^*U_{2*}|\approx|\dot{I}_*| dU˙=S=P2+Q2 ordU˙=S=I˙U2I˙

由于有热稳定要求,即 I 2 R < η ⇒ I 2 < η R ⇒ ∣ d U ˙ ∗ ∣ 2 < η R I^2R<\eta\Rightarrow I^2<\frac{\eta}{R}\Rightarrow |\mathrm{d}\dot{U}_*|^2<\frac{\eta}{R} I2R<ηI2<RηdU˙2<Rη,这说明热稳定的约束是一个圆区域,这个圆的圆心是 U ˙ 2 \dot{U}_2 U˙2向量的终点。

另外再画出电压约束,要求电压降落<10%,还要要求 ∣ U ˙ 2 ∗ ∣ > 0.9 |\dot{U}_{2*}|>0.9 U˙2>0.9,则这两个圆弧都是以 U ˙ 2 \dot{U}_2 U˙2向量的起点为圆心的。

三个区域的重叠部分就是系统允许的运行位置。

这篇关于输电线路运行特性及简单电力系统潮流估算(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924011

相关文章

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

Linux使用nohup命令在后台运行脚本

《Linux使用nohup命令在后台运行脚本》在Linux或类Unix系统中,后台运行脚本是一项非常实用的技能,尤其适用于需要长时间运行的任务或服务,本文我们来看看如何使用nohup命令在后台... 目录nohup 命令简介基本用法输出重定向& 符号的作用后台进程的特点注意事项实际应用场景长时间运行的任务服

如何在一台服务器上使用docker运行kafka集群

《如何在一台服务器上使用docker运行kafka集群》文章详细介绍了如何在一台服务器上使用Docker运行Kafka集群,包括拉取镜像、创建网络、启动Kafka容器、检查运行状态、编写启动和关闭脚本... 目录1.拉取镜像2.创建集群之间通信的网络3.将zookeeper加入到网络中4.启动kafka集群

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

PostgreSQL如何用psql运行SQL文件

《PostgreSQL如何用psql运行SQL文件》文章介绍了两种运行预写好的SQL文件的方式:首先连接数据库后执行,或者直接通过psql命令执行,需要注意的是,文件路径在Linux系统中应使用斜杠/... 目录PostgreSQ编程L用psql运行SQL文件方式一方式二总结PostgreSQL用psql运

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

电力系统中的A类在线监测装置—APView400

随着电力系统的日益复杂和人们对电能质量要求的提高,电能质量在线监测装置在电力系统中得到广泛应用。目前,市场上的在线监测装置主要分为A类和B类两种类型,A类和B类在线监测装置主要区别在于应用场景、技术参数、通讯协议和扩展性。选择时应根据实际需求和应用场景综合考虑,并定期维护和校准。电能质量在线监测装置是用于实时监测电力系统中的电能质量参数的设备。 APView400电能质量A类在线监测装置以其多核

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h