tushare获取基本面相关数据可视化

2024-04-21 19:38

本文主要是介绍tushare获取基本面相关数据可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用Tushare(地址:https://tushare.pro/register?reg=479106)调取基本面数据并可视化的过程记录。

比如要分析对比宁德时代(股票代码300750.SZ)和高轩国科的ROE(股票代码002074.SZ),思路就是调取两家公司的ROE数据,然后将年份作为X,两个公司的ROE值作为Y1Y2呈现在一张图中。

1.调取ROE数据

在tushare的搜索引擎处输入roe就可以找到数据的接口,其他数据同理。

https://tushare.pro/register?reg=479106https://tushare.pro/register?reg=479106

 

搜索发现 ROE的数据属于财务指标数据,结合官网的接口用法示例

import tushare as ts
import matplotlib.pyplot as plt
pro = ts.pro_api()df = pro.query('fina_indicator', ts_code='300750.SZ', start_date='20150101', fields='end_date,roa,roe')
df2 = pro.query('fina_indicator', ts_code='002074.SZ', start_date='20150101', fields='end_date,roa,roe')

其中fina_indicator对应数据的接口。roe在field参数里面。(因为是做基本面分析,所以把roa也加进来了)

输出df['end_date'],发现它是按照季度从后往前排列的,所以相应时间的ROE数据应该也是按照季度从后往前排列,可视化的时候注意要把时间从前往后排列。

搞清楚ROE数据相对应的时间后就可以啦!然后就把数据喂进列表里面。如果按照年度分析,就只要‘end_date’中带有‘1231’的数据(表示年末)。前文提到时间顺序的问题,所有最后要把列表里的数据reverse

x = []
Roa = []
Roe = []
Roe2 = []
for i in range(len(df)):if '1231' in df['end_date'][i]:x.append(df['end_date'][i])Roa.append(df['roa'][i])Roe.append(df['roe'][i])Roe2.append(df2['roe'][i])
x.reverse()
Roa.reverse()
Roe.reverse()
Roe2.reverse()

 结果如下:

 2.数据可视化

plt.rcParams["font.family"] = 'SimHei'
fig, ax1 = plt.subplots(figsize = (10, 5), facecolor='white')
ax1.plot(x,Roa,marker='o',color='darkred',label='ROA(%)')
plt.legend()
ax1.plot(x,Roe,marker='v',color='gold',label='ROE(%)')
ax1.plot(x,Roe2,marker='v',color='green',label='国轩高科ROE(%)')
ax1.set_ylabel('盈利能力',fontsize=12)
ax1.legend(loc=2,fontsize=12)for time, y in zip(x,Roa):ax1.text(time, y, '%.4f'%y, ha='center', va='bottom', fontsize=10.5)
for time, y in zip(x,Roe):ax1.text(time, y, '%.4f'%y, ha='center', va='bottom', fontsize=10.5)
plt.grid(axis="y",linestyle='-.')
plt.show()

主要的函数:

plt.subplots(figsize = (10, 5), facecolor='white')#构建画布
ax1.plot(x,Roa,marker='o',color='darkred',label='ROA(%)')#输入参数x,y
ax1.set_ylabel('盈利能力',fontsize=12)#给图片取个标题
ax1.text(time, y, '%.4f'%y, ha='center', va='bottom', fontsize=10.5)#在图上显示具体的数据大小

具体参数的细节可以翻阅matplotlib.pyplot手册

结果:

分析:上图展现了宁德时代的总资产收益率、净资产收益率。指标从2015年降到2020年,虽然2021年有小幅度上升,但总体趋于平稳。主要是由于销售净利率和总资产周转率在不断降低造成的。对于高速增长的企业不能简单通过ROE高低来判断其优劣。公司电池单价的下降幅度超过了成本的下降幅度,这背后有行业发展规律原因,也有宁德时代通过主动降低毛利率来获得市场规模和高速增长的战略考量。即使在这种情况下也可以从图中看出相比行业其他公司(如国轩高科),宁德时代的ROE水平仍然保持在一个相对较高的水平上。

同理还可以得到其他的基本面数据如下所示:

 

 

 

这篇关于tushare获取基本面相关数据可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/923882

相关文章

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

MySQL 获取字符串长度及注意事项

《MySQL获取字符串长度及注意事项》本文通过实例代码给大家介绍MySQL获取字符串长度及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 获取字符串长度详解 核心长度函数对比⚠️ 六大关键注意事项1. 字符编码决定字节长度2

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

python3如何找到字典的下标index、获取list中指定元素的位置索引

《python3如何找到字典的下标index、获取list中指定元素的位置索引》:本文主要介绍python3如何找到字典的下标index、获取list中指定元素的位置索引问题,具有很好的参考价值,... 目录enumerate()找到字典的下标 index获取list中指定元素的位置索引总结enumerat

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模