nn.Sequential与tensorflow的Sequential对比

2024-04-21 08:04

本文主要是介绍nn.Sequential与tensorflow的Sequential对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

nn.Sequential() 是 PyTorch 深度学习框架中的一个类,用于按顺序容器化模块。nn.Sequential 是一个有序的容器,它包含多个网络层,数据会按照在构造函数中传入顺序依次通过每个层。在 nn.Sequential 中,不需要定义 forward 方法,因为当你调用它时,会按照顺序调用每个子模块。

import torch  
import torch.nn as nn  # 创建一个简单的神经网络  
model = nn.Sequential(  nn.Linear(784, 128),  # 输入层到隐藏层,784个输入节点,128个输出节点  nn.ReLU(),           # 激活函数  nn.Linear(128, 10)   # 隐藏层到输出层,128个输入节点,10个输出节点  
)  # 创建一个随机的输入张量  
input_tensor = torch.randn(1, 784)  # 将输入张量传递给模型  
output_tensor = model(input_tensor)  print(output_tensor.size())  # 输出应为 torch.Size([1, 10])
import tensorflow as tf  
from tensorflow.keras.datasets import mnist  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense, Flatten  
from tensorflow.keras.losses import SparseCategoricalCrossentropy  
from tensorflow.keras.optimizers import Adam  # 加载MNIST数据集  
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()  # 归一化像素值到0-1之间  
train_images = train_images / 255.0  
test_images = test_images / 255.0  # 将图像的形状展平,以便可以输入到神经网络中  
train_images = train_images[..., tf.newaxis]  
test_images = test_images[..., tf.newaxis]  # 创建Sequential模型  
model = Sequential([  Flatten(input_shape=(28, 28, 1)),  # 将28x28像素的图像展平为一维张量  Dense(128, activation='relu'),      # 全连接层,128个神经元,使用ReLU激活函数  Dense(10)                           # 输出层,10个神经元(对应10个数字类别)  
])  # 编译模型  
model.compile(optimizer=Adam(),  loss=SparseCategoricalCrossentropy(from_logits=True),  metrics=['accuracy'])  # 训练模型  
model.fit(train_images, train_labels, epochs=5)  # 评估模型  
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)  print('\nTest accuracy:', test_acc)

self.conv 通常指的是类的一个属性,这个属性通常是一个卷积层(Convolutional Layer)

import torch  
import torch.nn as nn  
import torch.nn.functional as F  class SimpleCNN(nn.Module):  def __init__(self):  super(SimpleCNN, self).__init__()  # 定义一个卷积层,输入通道数为3(例如RGB图像),输出通道数为16,卷积核大小为3x3  self.conv = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)  # 可以添加其他层...  def forward(self, x):  # 在前向传播中使用卷积层  x = self.conv(x)  # 可以添加其他操作,例如激活函数、池化等...  x = F.relu(x)  # 返回处理后的输出  return x  # 创建模型实例  
model = SimpleCNN()  # 假设我们有一个输入张量 input_tensor,其形状为 [batch_size, 3, height, width]  
# 我们可以将其传递给模型进行前向传播  
output_tensor = model(input_tensor)

这篇关于nn.Sequential与tensorflow的Sequential对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/922564

相关文章

免费也能高质量!2024年免费录屏软件深度对比评测

我公司因为客户覆盖面广的原因经常会开远程会议,有时候说的内容比较广需要引用多份的数据,我记录起来有一定难度,所以一般都用录屏工具来记录会议内容。这次我们来一起探索有什么免费录屏工具可以提高我们的工作效率吧。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  录屏软件录屏功能就是本职,这款录屏工具在录屏模式上提供了多种选项,可以选择屏幕录制、窗口

类的load方法和initialize方法对比

1. load方法在main()之前被调用,而initialize方法在main()之后调用 load方法实际是在load_images过程中被调用的。load_images会将当前应用依赖的所有镜像(动态库)加载到内存,在在加载中首先是对镜像进行扫描,将所有包含 load 方法的类加入列表 loadable_classes ,然后从这个列表中逐一调用其所包含的 load 方法。 +[XXCl

JavaScript正则表达式六大利器:`test`、`exec`、`match`、`matchAll`、`search`与`replace`详解及对比

在JavaScript中,正则表达式(Regular Expression)是一种用于文本搜索、替换、匹配和验证的强大工具。本文将深入解析与正则表达式相关的几个主要执行方法:test、exec、match、matchAll、search和replace,并对它们进行对比,帮助开发者更好地理解这些方法的使用场景和差异。 正则表达式基础 在深入解析方法之前,先简要回顾一下正则表达式的基础知识。正则

【HarmonyOS】-TaskPool和Worker的对比实践

ArkTS提供了TaskPool与Worker两种多线程并发方案,下面我们将从其工作原理、使用效果对比两种方案的差异,进而选择适用于ArkTS图片编辑场景的并发方案。 TaskPool与Worker工作原理 TaskPool与Worker两种多线程并发能力均是基于 Actor并发模型实现的。Worker主、子线程通过收发消息进行通信;TaskPool基于Worker做了更多场景化的功能封装,例

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

claude和chatgpt对比:哪一个更适合你?

前言 我们都知道,Claude和ChatGPT都是当前人工智能领域中备受关注的对话生成模型,作为国外AI模型两大巨头,好像他们的实力都不相上下呀! 这时就会有很多同学疑惑,那我如果想选择AI,到底是选择Claude,还是ChatGPT呢?哪个更好呢?他们之间有什么不同独特的地方呢?他们又分别适合在哪些场景使用呢? 技术背景 Claude是由Anthropic公司开发的高性能模型,而Chat

win10不用anaconda安装tensorflow-cpu并导入pycharm

记录一下防止忘了 一、前提:已经安装了python3.6.4,想用tensorflow的包 二、在pycharm中File-Settings-Project Interpreter点“+”号导入很慢,所以直接在cmd中使用 pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow-cpu下载好,默认下载的tensorflow

pytorch torch.nn.functional.one_hot函数介绍

torch.nn.functional.one_hot 是 PyTorch 中用于生成独热编码(one-hot encoding)张量的函数。独热编码是一种常用的编码方式,特别适用于分类任务或对离散的类别标签进行处理。该函数将整数张量的每个元素转换为一个独热向量。 函数签名 torch.nn.functional.one_hot(tensor, num_classes=-1) 参数 t

torch.nn 与 torch.nn.functional的区别?

区别 PyTorch中torch.nn与torch.nn.functional的区别是:1.继承方式不同;2.可训练参数不同;3.实现方式不同;4.调用方式不同。 1.继承方式不同 torch.nn 中的模块大多数是通过继承torch.nn.Module 类来实现的,这些模块都是Python 类,需要进行实例化才能使用。而torch.nn.functional 中的函数是直接调用的,无需