pmf-automl源码分析

2024-04-20 23:38
文章标签 分析 源码 automl pmf

本文主要是介绍pmf-automl源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • arxiv论文(有附录,但是字小)
    Probabilistic Matrix Factorization for Automated Machine Learning
  • NIPS2018论文(字大但是没有附录)
    Probabilistic Matrix Factorization for Automated Machine Learning
  • 代码
    https://github.com/rsheth80/pmf-automl

文章目录

  • 初窥项目文件
  • PMF模型训练
    • 数据切分
    • 初始隐变量
    • 模型的定义与训练
    • D个高斯过程的定义
    • 后验分布协方差矩阵的求解
      • transform_forward与transform_backward函数
      • get_cov函数的顶层设计
      • kernel的RBF
      • kernel的White
      • 求协方差矩阵复盘
    • GP前向函数的返回值的含义

初窥项目文件

用jupyter lab打开all_normalized_accuracy_with_pipelineID.csv
在这里插入图片描述

all_normalized_accuracy_with_pipelineID.zip contains the performance observations from running 42K pipelines on 553 OpenML datasets. The task was classification and the performance metric was balanced accuracy. Unzip prior to running code.

行表示pipeline id,列表示dataset id,元素表示balanced accuracy

在这里插入图片描述
简单查阅了一下pipelines.json,基本只有pcapolynomial两种preprocessor。

PMF模型训练

数据切分

Ytrain, Ytest, Ftrain, Ftest = get_data()
>>> Ytrain.shape
Out[2]: (42000, 464)
>>> Ytest.shape
Out[3]: (42000, 89)
>>> Ftrain.shape
Out[4]: (464, 46)
>>> Ftest.shape
Out[5]: (89, 46)

训练测试集切分,89个数据集作为测试集,464个训练集

初始隐变量

    imp = sklearn.impute.SimpleImputer(missing_values=np.nan, strategy='mean')X = sklearn.decomposition.PCA(Q).fit_transform(imp.fit(Ytrain).transform(Ytrain))
>>> X.shape
Out[7]: (42000, 20)

根据目前的理解,整个训练过程就是根据GP来训练X的隐变量。这个隐变量是用PCA初始化的。

处理训练集的缺失值,并降维为20维(42K个pipelines,数据集从553降为20个隐变量)

论文:the elements of Y Y Y are given by as nonlinear function of the latent variables, y n , d = f d ( x n ) + ϵ y_{n,d}=f_d(x_n)+\epsilon yn,d=fd(xn)+ϵ, where ϵ \epsilon ϵ is independent Gaussian noise.

这里的 Y Y Y指的是整个 42000 × 464 42000\times464 42000×464矩阵,那么 X X X就是pipeline空间的隐变量,这里隐变量维度 Q = 20 Q=20 Q=20 X X X的shape为 42000 × 20 42000\times20 42000×20

模型的定义与训练

模型的顶层定义:

    kernel = kernels.Add(kernels.RBF(Q, lengthscale=None), kernels.White(Q))m = gplvm.GPLVM(Q, X, Ytrain, kernel, N_max=N_max, D_max=batch_size)optimizer = torch.optim.SGD(m.parameters(), lr=lr)m = train(m, optimizer, f_callback=f_callback, f_stop=f_stop)

f_callbackf_stop都是两个local函数

    def f_callback(m, v, it, t):varn_list.append(transform_forward(m.variance).item())logpr_list.append(m().item()/m.D)if it == 1:t_list.append(t)else:t_list.append(t_list[-1] + t)if save_checkpoint and not (it % checkpoint_period):torch.save(m.state_dict(), fn_checkpoint + '_it%d.pt' % it)print('it=%d, f=%g, varn=%g, t: %g'% (it, logpr_list[-1], transform_forward(m.variance), t_list[-1]))
    def f_stop(m, v, it, t):if it >= maxiter-1:print('maxiter (%d) reached' % maxiter)return Truereturn False

看到训练函数train

def train(m, optimizer, f_callback=None, f_stop=None):it = 0while True:try:t = time.time()optimizer.zero_grad()nll = m()nll.backward()optimizer.step()it += 1t = time.time() - tif f_callback is not None:f_callback(m, nll, it, t)# f_stop should not be a substantial portion of total iteration timeif f_stop is not None and f_stop(m, nll, it, t):breakexcept KeyboardInterrupt:breakreturn m

论文公式(5):

N L L d = 1 2 ( N d l o g ( 2 π ) + l o g ∣ C d ∣ + Y c ( d )

这篇关于pmf-automl源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/921629

相关文章

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3