pmf-automl源码分析

2024-04-20 23:38
文章标签 分析 源码 automl pmf

本文主要是介绍pmf-automl源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • arxiv论文(有附录,但是字小)
    Probabilistic Matrix Factorization for Automated Machine Learning
  • NIPS2018论文(字大但是没有附录)
    Probabilistic Matrix Factorization for Automated Machine Learning
  • 代码
    https://github.com/rsheth80/pmf-automl

文章目录

  • 初窥项目文件
  • PMF模型训练
    • 数据切分
    • 初始隐变量
    • 模型的定义与训练
    • D个高斯过程的定义
    • 后验分布协方差矩阵的求解
      • transform_forward与transform_backward函数
      • get_cov函数的顶层设计
      • kernel的RBF
      • kernel的White
      • 求协方差矩阵复盘
    • GP前向函数的返回值的含义

初窥项目文件

用jupyter lab打开all_normalized_accuracy_with_pipelineID.csv
在这里插入图片描述

all_normalized_accuracy_with_pipelineID.zip contains the performance observations from running 42K pipelines on 553 OpenML datasets. The task was classification and the performance metric was balanced accuracy. Unzip prior to running code.

行表示pipeline id,列表示dataset id,元素表示balanced accuracy

在这里插入图片描述
简单查阅了一下pipelines.json,基本只有pcapolynomial两种preprocessor。

PMF模型训练

数据切分

Ytrain, Ytest, Ftrain, Ftest = get_data()
>>> Ytrain.shape
Out[2]: (42000, 464)
>>> Ytest.shape
Out[3]: (42000, 89)
>>> Ftrain.shape
Out[4]: (464, 46)
>>> Ftest.shape
Out[5]: (89, 46)

训练测试集切分,89个数据集作为测试集,464个训练集

初始隐变量

    imp = sklearn.impute.SimpleImputer(missing_values=np.nan, strategy='mean')X = sklearn.decomposition.PCA(Q).fit_transform(imp.fit(Ytrain).transform(Ytrain))
>>> X.shape
Out[7]: (42000, 20)

根据目前的理解,整个训练过程就是根据GP来训练X的隐变量。这个隐变量是用PCA初始化的。

处理训练集的缺失值,并降维为20维(42K个pipelines,数据集从553降为20个隐变量)

论文:the elements of Y Y Y are given by as nonlinear function of the latent variables, y n , d = f d ( x n ) + ϵ y_{n,d}=f_d(x_n)+\epsilon yn,d=fd(xn)+ϵ, where ϵ \epsilon ϵ is independent Gaussian noise.

这里的 Y Y Y指的是整个 42000 × 464 42000\times464 42000×464矩阵,那么 X X X就是pipeline空间的隐变量,这里隐变量维度 Q = 20 Q=20 Q=20 X X X的shape为 42000 × 20 42000\times20 42000×20

模型的定义与训练

模型的顶层定义:

    kernel = kernels.Add(kernels.RBF(Q, lengthscale=None), kernels.White(Q))m = gplvm.GPLVM(Q, X, Ytrain, kernel, N_max=N_max, D_max=batch_size)optimizer = torch.optim.SGD(m.parameters(), lr=lr)m = train(m, optimizer, f_callback=f_callback, f_stop=f_stop)

f_callbackf_stop都是两个local函数

    def f_callback(m, v, it, t):varn_list.append(transform_forward(m.variance).item())logpr_list.append(m().item()/m.D)if it == 1:t_list.append(t)else:t_list.append(t_list[-1] + t)if save_checkpoint and not (it % checkpoint_period):torch.save(m.state_dict(), fn_checkpoint + '_it%d.pt' % it)print('it=%d, f=%g, varn=%g, t: %g'% (it, logpr_list[-1], transform_forward(m.variance), t_list[-1]))
    def f_stop(m, v, it, t):if it >= maxiter-1:print('maxiter (%d) reached' % maxiter)return Truereturn False

看到训练函数train

def train(m, optimizer, f_callback=None, f_stop=None):it = 0while True:try:t = time.time()optimizer.zero_grad()nll = m()nll.backward()optimizer.step()it += 1t = time.time() - tif f_callback is not None:f_callback(m, nll, it, t)# f_stop should not be a substantial portion of total iteration timeif f_stop is not None and f_stop(m, nll, it, t):breakexcept KeyboardInterrupt:breakreturn m

论文公式(5):

N L L d = 1 2 ( N d l o g ( 2 π ) + l o g ∣ C d ∣ + Y c ( d )

这篇关于pmf-automl源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/921629

相关文章

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL