PoSH-autosklearn源码分析

2024-04-20 23:38
文章标签 分析 源码 posh autosklearn

本文主要是介绍PoSH-autosklearn源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:(2018ICML)
https://ml.informatik.uni-freiburg.de/papers/18-AUTOML-AutoChallenge.pdf

代码:
http://ml.informatik.uni-freiburg.de/downloads/automl_competition_2018.zip

数据:(codalab平台,需要注册)
https://competitions.codalab.org/competitions/17767#participate-get_data

TODO LIST

  1. PoSH对时序数据是怎么处理的?

文章目录

  • 特别苟的Manual design decisions
    • 特征选择
    • 少样本数不采用SH
  • Budget 的计算

特别苟的Manual design decisions

  1. 如果特征数>500, 用单变量特征选择(听起来很牛逼,看代码就知道怎么回事了)
  2. 如果样本数<1000, 不采用SuccessiveHaving。并且采用交叉验证的方式,而不是HoldOut

在附录A.3A.4有比较详细的需求。

特征选择

特征选择
logic.project_data_via_feature_selection

imp = sklearn.preprocessing.Imputer(strategy='median')
pca = sklearn.feature_selection.SelectKBest(k=n_keep)
pipeline = sklearn.pipeline.Pipeline((('imp', imp), ('pca', pca)))

如果特征数>500, 强行将为500.
lib/logic.py:114

        D.feat_type = [ft for i, ft in enumerate(D.feat_type) if rval[2][i] == True]

更新feat_type


少样本数不采用SH

回到logic
lib/logic.py:227

    if min_budget == max_budget:res = SSB.run(len(autosklearn_portfolio), min_n_workers=1)else:res = SSB.run(1, min_n_workers=1)

如果样本数<1000, 则设置min_budget = max_budget, 且不采用SH,强行迭代16次。

Budget 的计算

    max_budget = 1.0min_budget = 1.0 / 16eta = 4

eta是什么意思呢?可以回顾我的这篇文章:HpBandSter源码分析

n_iterations是用户指定的,stages是根据max_budget, min_budget, eta决定的,详见hpbandster.optimizers.bohb.BOHB#__init__

hpbandster/optimizers/bohb.py:101

self.max_SH_iter = -int(np.log(min_budget/max_budget)/np.log(eta)) + 1
max_budget=243
min_budget=9
eta=3

s m a x = l o g η ( R ) s_{max}=log_{\eta}(R) smax=logη(R)
B = ( S m a x + 1 ) R B=(S_{max}+1)R B=(Smax+1)R

eta η \eta η 其实是SuccessiveHaving的budget扩增倍数,从9到243,每次增加3倍,即:

9, 27, 81, 243

再看到PoSH的代码

    max_budget = 1.0min_budget = 1.0 / 16eta = 4

hp_util.SideShowBOHB

self.max_SH_iter = -int(np.log(min_budget / max_budget) / np.log(eta)) + 1
self.budgets = max_budget * np.power(eta,-np.linspace(self.max_SH_iter - 1,0, self.max_SH_iter))
self.max_SH_iter
Out[5]: 3
self.budgets
Out[6]: array([0.0625, 0.25  , 1.    ])

1 16 ⇒ 4 16 ⇒ 16 16 \frac{1}{16} \Rightarrow \frac{4}{16} \Rightarrow \frac{16}{16} 1611641616


lib/hp_util.py:62

            self.budget_converter = {'libsvm_svc': lambda b: b,'random_forest': lambda b: int(b*128),'sgd': lambda b: int(b*512),'xgradient_boosting': lambda b: int(b*512),'extra_trees': lambda b: int(b*1024)}

budget与iterations的转换数与论文也是对应的

lib/logic.py:202

worker.run(background=True)

在用线程跑

portfolio.get_hydra_portfolio
获取混合文件夹

balancing的策略还是存在的

    SSB = hp_util.SideShowBOHB(configspace=worker.get_config_space(),initial_configs=autosklearn_portfolio,run_id=run_id,eta=eta, min_budget=min_budget, max_budget=max_budget,SH_only=True,       # suppresses Hyperband's outer loop and runs SuccessiveHalving onlynameserver=ns_host,nameserver_port=ns_port,ping_interval=sleep,job_queue_sizes=(-1, 0),dynamic_queue_size=True,)
eta
Out[4]: 4
min_budget
Out[5]: 0.0625
max_budget
Out[6]: 1.0
sleep
Out[7]: 5
run_id
Out[8]: '0'

SideShowBOHBMaster, AutoMLWorkerWorker

class PortfolioBOHB(BOHB):""" subclasses the config_generator BOHB"""def __init__(self, initial_configs=None, *args, **kwargs):super().__init__(*args, **kwargs)if initial_configs is None:# dummy initial portfolioself.initial_configs = [self.configspace.sample_configuration().get_dictionary() for i in range(5)]else:self.initial_configs = initial_configs

继承BOHB,仅仅多个initial_configs

        cg = PortfolioBOHB(initial_configs=initial_configs,configspace=configspace,min_points_in_model=min_points_in_model,top_n_percent=top_n_percent,num_samples=num_samples,random_fraction=random_fraction,bandwidth_factor=bandwidth_factor,)

cg: ConfigGenerate

min_points_in_model
top_n_percent
Out[10]: 15
num_samples
Out[11]: 64
random_fraction
Out[12]: 0.5
bandwidth_factor
Out[13]: 3

min_points_in_model = None

hp_util.SideShowBOHB#get_next_iteration

iteration
Out[2]: 0
s
Out[3]: 2
n0
Out[4]: 16
ns
Out[5]: [16, 4, 1]
self.budgets[(-s - 1):]
Out[6]: array([0.0625, 0.25  , 1.    ])

s是HyperBand的bracket,代表stages数目。
ns代表配置数,依次递减。budgets预算数依次递增。

hpbandster.iterations.base.BaseIteration#add_configuration

self.config_sampler
Out[7]: <bound method PortfolioBOHB.get_config of <hp_util.PortfolioBOHB object at 0x7f1670208208>>

hp_util.PortfolioBOHB#get_config

    def get_config(self, budget):# return a portfolio member firstif len(self.initial_configs) > 0 and True:c = self.initial_configs.pop()return (c, {'portfolio_member': True})return (super().get_config(budget))

用元学习文件夹代替了随机推荐

最后用SH的方法迭代1000次

这篇关于PoSH-autosklearn源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/921627

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。