本文主要是介绍常见的七种排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
一、插入排序
1、直接插入排序
2、希尔排序(缩小增量排序)
二、选择排序
3、直接选择排序
4、堆排序
三、交换排序
5、冒泡排序
6、快速排序
四、归并排序
7、归并排序
五、总结
一、插入排序
1、直接插入排序
思路:
i 用来遍历数组,拿到一个就放进 tmp,
j 从 i 的前一个开始,每次都和 tmp里的值进行比较,若比tmp的值大,j 的值给到 j+1,j--
直到 j 的值比tmp小,或者 j 减到 <0,循环结束,tmp 的值给到 j+1
- 时间复杂度:最坏情况下,逆序,O(n^2);最好情况下,有序,O(n)
- 空间复杂度:O(1)
- 稳定性:稳定
- 特点:当数据量不多,且基本上趋于有序时,使用直接插入排序很快,趋于O(n)
public class InsertSort {public void insertSort(int[] array){for (int i = 1; i < array.length; i++) {int tmp = array[i];int j = i-1;for (; j >= 0; j--) {if(array[j] > tmp){array[j+1] = array[j];}else{break;}}array[j+1] = tmp;}}
}
2、希尔排序(缩小增量排序)
- 时间复杂度:O(n^1.3)
- 空间复杂度:O(1)
- 稳定性:不稳定
- 特点:是对直接插入排序的优化,在最后进行直接插入排序之前,增加了预排序。
/*希尔排序(缩小增量排序):gap每次除2
*/
public class ShellSort {public void shellSort(int[] array){int gap = array.length;while(gap > 1){gap /= 2;shell(array,gap);}}public void shell(int[] array,int gap){for (int i = gap; i < array.length; i++) {int tmp = array[i];int j = i - gap;for (; j >= 0; j -= gap) {if(array[j] > tmp){array[j+gap] = array[j];}else{break;}}array[j+gap] = tmp;}}
}
二、选择排序
3、直接选择排序
思路:(走一遍,找到一个最小值)
i 用来遍历数组,拿到一个下标就放进 mIndex
j 从 i 的后一个开始,遍历数组,遇到比 mIndex里的值 小的就更新 mIndex
这一轮遍历完,mIndex里存的就是最小值的下标,把 i 和 mIndex 下标的元素 交换,i++
优化后的思路:(用left 和 right 来遍历数组,走一遍能找到一个最小值和一个最大值)
left 和 right 分别指向 数组的左右两边,minIndex 和 maxIndex 的初始值是 left
j 从 left 的后一个开始遍历,遍历数组 [left+1,right],遇到比 minIndex里的值 小的就更新 minIndex,遇到比 maxIndex里的值 大的就更新 maxIndex
这一轮遍历完,minIndex里存的就是最小值的下标,maxIndex里存的就是最大值的下标,然后把 left 和 minIndex 下标的元素交换,把 right 和 maxIndex 下标的元素交换,left++,right--,但如果 maxIndex 刚好是left,那么最大值就会被换到 minIndex 下标的位置,就得先更新一下 maxIndex,让 maxIndex = minIndex
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)
- 稳定性:不稳定
public class SelectSort {public void selectSort(int[] array){for (int i = 0; i < array.length; i++) {int mIndex = i;for (int j = i+1; j < array.length; j++) {if(array[j] < array[mIndex]){mIndex = j;}}//走到这,mIndex里存的是[i,array.length)中最小值的下标int tmp = array[i];array[i] = array[mIndex];array[mIndex] = tmp;}}
}
优化后:
public void select(int[] array){int left = 0;int right = array.length-1;while(left < right){int minIndex = left;int maxIndex = left;for (int j = left+1; j <= right; j++) {if(array[j] < array[minIndex]){minIndex = j;}if(array[j] > array[maxIndex]){maxIndex = j;}}//走到这,minIndex存的是最小值的下标,maxIndex存的是最大值的下标swap(array, left, minIndex);//如果最大值的下标是leftif(maxIndex == left){maxIndex = minIndex;}swap(array, right, maxIndex);left++;right--;}}public void swap(int[] array,int x,int y){int tmp = array[x];array[x] = array[y];array[y] = tmp;}
4、堆排序
- 时间复杂度:O(n*log n)
- 空间复杂度:O(1)
- 稳定性:不稳定
- 堆排的时间复杂度:建大根堆的时间复杂度+排序的时间复杂度,建大根堆的时间复杂度:O(n),排序的时间复杂度:O(n*log n) —— 每次shiftDown 0的时间复杂度是 log n,要 n-1 次,所以堆排的时间复杂度:O(n)+O(n*log n) ≈ O(n*log n)
public class HeapSort {public void heapSort(int[] array){//首先,建一个大根堆createBigHeap(array);//然后排序int end = array.length-1;while(end > 0){swap(array,0,end);shiftDown(array,0,end);end--;}}public void createBigHeap(int[] array){for (int parent = (array.length-1-1)/2; parent >= 0; parent--) {//每个子树都需要向下调整成大根堆shiftDown(array,parent,array.length);}}public void shiftDown(int[] array,int parent,int end){int child = 2*parent+1;while(child < end){if(child+1 < end && array[child] < array[child+1]){child++;}if(array[child] > array[parent]){swap(array,child,parent);parent = child;child = 2*parent+1;}else{break;}}}public void swap(int[] array,int x,int y){int tmp = array[x];array[x] = array[y];array[y] = tmp;}
}
三、交换排序
5、冒泡排序
思路:
相邻的两个元素进行比较,i 是趟数,j 是每一趟要比较的次数,每一趟都会把一个最大值放到后面。
- 时间复杂度:(不考虑优化)O(n^2),如果考虑优化的话,最好情况下可以达到O(n)
- 空间复杂度:O(1)
- 稳定性: 稳定
public class BubbleSort {public void bubbleSort(int[] array){//趟数for (int i = 0; i < array.length-1; i++) {boolean flag = true;//1趟for (int j = 0; j < array.length-1-i; j++) {if(array[j] > array[j+1]){swap(array,j,j+1);flag = false;}}//如果flag还是true,说明这一趟中没有进入过if语句进行交换,说明是元素是有序的if(flag){break;}}}public void swap(int[] array,int x,int y){int tmp = array[x];array[x] = array[y];array[y] = tmp;}
}
6、快速排序
- 时间复杂度:O(n*logn)
- 空间复杂度:O(logn)
- 稳定性:不稳定
- 时间复杂度:每层遍历的都是n,要遍历树的高度层,树的高度是logn,所以时间复杂度是nlogn;空间复杂度:需要额外开辟的空间就是存pivot这个基准需要的空间,由于当左边递归完去递归右边时,左边给基准开辟的空间就会被回收,所以需要额外给pivot开辟的空间就是树的高度,所以空间复杂度是logn
- 上述快排的时间复杂度和空间复杂度不是最坏的,当数据是顺序或逆序时,二叉树只有左树或只有右树,达到最坏,此时时间复杂度是O(n^2),空间复杂度是O(n)
但我们可以优化代码,不让它出现只有左树或只有右树的情况。
1、优化方法一:(解决划分不均匀的问题)
定义一个mid = (start+end)/2
在找基准之前,判断 start,end,mid,三个下标对应的值,谁是中间的那个,返回下标。
然后,与start下标进行交换。尽量解决划分不均匀的问题
2、优化方法二:(减少后几层的递归,解决效率问题)
递归到小的子区间时,可以考虑使用插入排序。
我们发现,后几层占了整棵树的大部分结点,递归的次数最多发生在后面。所以,我们可以减少后几层的递归来解决效率问题。递归区间很小的时候,我们就不递归了,使用直接插入排序。(这时数据页越来越有序了,使用直接插入排序的时间复杂度趋近O(n),是很快的)
(1)Hoare 法:
找基准:
把left的下标记录下来为i,并把left下标对应的值放进tmp,
从右边找到一个比tmp小的,从左边找到一个比tmp大的,然后交换。这个过程是个循环,循环的条件是 left < right,一旦left和right相等了,就会出循环,此时left和right下标就是基准,交换i和基准对应的值。到这里,基准的左边都是比它小的(或等于它的),基准的右边都是比它大的(或等于它的)
public class QuickSort {public void quick(int[] array,int start,int end){if(start >= end){return;}// end-start+1 是 [start,end]这个区间元素的个数if(end-start+1 <= 15){//对 start 和 end 区间范围内使用插入排序insertSort(array,start,end);return;}//找三个值中中间值的下标int mid = findMidOfIndex(array,start,end);swap(array,mid,start);//找基准int pivot = partition(array,start,end);//pivot 就是基准,然后分而治之quick(array,start,pivot-1);quick(array,pivot+1,end);}public void quickSort(int[] array){quick(array,0,array.length-1);}public void insertSort(int[] array,int start,int end){for (int i = start+1; i <= end; i++) {int tmp = array[i];int j = i-1;for (; j >= start; j--) {if(array[j] > tmp){array[j+1] = array[j];}else{break;}}array[j+1] = tmp;}}private int findMidOfIndex(int[] array, int start, int end) {int mid = (start+end)/2;if(array[start] < array[end]){if(array[mid] < array[start]){return start;}else if(array[mid] > array[end]){return end;}else{return mid;}}else{if(array[mid] > array[start]){return start;}else if(array[mid] < array[end]){return end;}else{return mid;}}}public int partition(int[] array,int left,int right){//把left下标记录下来,并把值放进tmp,后面都和tmp进行比较int i = left;int tmp = array[left];// left < right 不能是 <= ,当 left == right 时,说明这一趟走完了,基准的下标找到了while(left < right){/** 要先从右边找到一个比tmp小的,再从左边找到一个比tmp大的,不能反过来* 因为如果反过来了,就可能会出现我从左边找到了一个比tmp大的后,开始从右边找比tmp小的,* 但是还没有找到left和right就相等了。此时,left和right下标对应的值就是比tmp大的值* 出循环后, swap(array,i,left) 就会将大的值换到基准前面去。所以不能反过来。* 按照先从右边找一个比tmp小的的方式,我们会先找到一个比tmp小的,即使还没找到比tmp大的就相遇了,* left和right下标对应的值也是比tmp小的值,交换后会将小的值放到前面。* 所以,一定要先从右边找比tmp小的值!!!*///从右面找到一个比tmp小的while(left < right && array[right] >= tmp){right--;}//从左面找到一个比tmp大的while(left < right && array[left] <= tmp){left++;}//从到这,left下标里存的是比tmp大的值,right下标里存的是比tmp小的值swap(array,left,right);}swap(array,i,left);return left;}public void swap(int[] array,int x,int y){int tmp = array[x];array[x] = array[y];array[y] = tmp;}}
(2)挖坑法: (做题优先使用挖坑法)
找基准:
把left下标对应的值放进tmp,
从右边找到一个比tmp小的(下标是right),放进left下标的坑;再从左边找到一个比tmp大的(下标是left),放进right下标的坑。这个过程是个循环,循环的条件是 left<right,直到left和right相等,退出循环,此时left和right就是基准。将tmp放进基准的这个坑里。到这里,基准的左边都是比它小的(或等于它的),基准的右边都是比它大的(或等于它的)
public class QuickSort2 {public void quickSort(int[] array){quick(array,0,array.length-1);}private void quick(int[] array, int start, int end) {//先找基准,然后找基准左边的基准,然后找基准右边的基准if(start >= end){return;}// end-start+1 是 [start,end]这个区间元素的个数if(end-start+1 <= 15){//对 start 和 end 区间范围内使用插入排序insertSort(array,start,end);return;}//找三个值中中间值的下标int mid = findMidOfIndex(array,start,end);swap(array,mid,start);//找基准int pivot = partition(array,start,end);quick(array,start,pivot-1);quick(array,pivot+1,end);}public void insertSort(int[] array,int start,int end){for (int i = start+1; i <= end; i++) {int tmp = array[i];int j = i-1;for (; j >= start; j--) {if(array[j] > tmp){array[j+1] = array[j];}else{break;}}array[j+1] = tmp;}}private int findMidOfIndex(int[] array, int start, int end) {int mid = (start+end)/2;if(array[start] < array[end]){if(array[mid] < array[start]){return start;}else if(array[mid] > array[end]){return end;}else{return mid;}}else{if(array[mid] > array[start]){return start;}else if(array[mid] < array[end]){return end;}else{return mid;}}}private int partition(int[] array, int left, int right) {int tmp = array[left];while(left < right){while(left < right && array[right] >= tmp){right--;}array[left] = array[right];while(left < right && array[left] <= tmp){left++;}array[right] = array[left];}array[left] = tmp;return left;}private void swap(int[] array, int x, int y) {int tmp = array[x];array[x] = array[y];array[y] = tmp;}
}
四、归并排序
7、归并排序
思路:
先分解,再合并
分解到一个一个的元素(递),然后合并(归)
主要逻辑就是,将两个有序的数组合并成一个有序的数组。
- 时间复杂度:O(n*logn)
- 空间复杂度:O(n)
- 稳定性:稳定
public class MergeSort {public void mergeSort(int[] array){int start = 0;int end = array.length-1;int mid = (start+end)/2;mergeSortChild(array,start,mid,end);}public void mergeSortChild(int[] array,int start,int mid,int end){if(start == end){return;}int s1 = 0;int e1 = mid;int s2 = mid+1;int e2 = end;//分解:分解到start==end,即只有一个元素mergeSortChild(array,s1,(s1+e1)/2,e1);mergeSortChild(array,s2,(s2+e2)/2,e2);//合并merge(array,s1,e1,s2,e2);}//把两个有序数组合成一个有序的数组public void merge(int[] array,int s1,int e1,int s2,int e2){int s = s1;int[] tmpArr = new int[e2-s1+1];int k = 0;while(s1<=e1 && s2<=e2){if(array[s1] < array[s2]){tmpArr[k++] = array[s1++];}else{tmpArr[k++] = array[s2++];}}while(s1 <= e1){tmpArr[k++] = array[s1++];}while(s2 <= e2){tmpArr[k++] = array[s2++];}for (int i = 0; i < k; i++) {array[s+i] = tmpArr[i];}}
}
五、总结
排序方法 | 时间复杂度 | 空间复杂度 | 稳定性 |
直接插入排序 | O(n^2) 最好情况下:O(n) | O(1) | 稳定 |
希尔排序 | O(n^1.3) | O(1) | 不稳定 |
直接选择排序 | O(n^2) | O(1) | 不稳定 |
堆排序 | O(n*logn) | O(1) | 不稳定 |
冒泡排序 | O(n^2) 最好情况下:O(n) | O(1) | 稳定 |
快速排序 | O(n*logn) 最坏情况下:O(n^2) | O(logn) 最坏情况下:O(n) | 不稳定 |
归并排序 | O(n*logn) | O(n) | 稳定 |
这篇关于常见的七种排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!