Android low memory killer 机制

2024-04-20 20:58
文章标签 android memory low 机制 killer

本文主要是介绍Android low memory killer 机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Android中,进程的生命周期都是由系统控制的。即使用户在界面上关掉一个应用,切换到了别的应用,那个应用的进程依然是存在于内存之中的。这样设计的目的是为了下次启动应用能更加快速。当然,随着系统运行时间的增长,内存中的进程可能会越来越多,而可用的内存则将会越来越少。Android Kernel会定时执行一次检查,杀死一些进程,释放掉内存。

那么,如何来判断,哪些进程是需要杀死的呢?答案就是:low memory killer 机制。

Android 的 low memory killer 是基于 linux 的OOM(out of memory)规则改进而来的。OOM 通过一些比较复杂的评分机制,对进程进行打分,然后将分数高的进程判定为 bad进程,杀死进程并释放内存。OOM 只有当系统内存不足的时候才会启动检查,而 low memory killer 则不仅是在应用程序分配内存发现内存不足时启动检查,它也会定时地进行检查。

Low memory killer 主要是通过进程的 oom_adj 来判定进程的重要程度的。oom_adj 的大小和进程的类型以及进程被调度的次序有关。

Low memory killer 的具体实现在 kernel,比如对于 android 4.4.3 所用的 kernel_3.4,代码在:linux/kernel/drivers/staging/android/lowmemorykiller.c

其原理很简单,‍在 linux 中,存在一个名为 kswapd 的内核线程,当linux回收存放分页的时候,kswapd 线程将会遍历一张 shrinker 链表,并执行回调,或者某个app分配内存,发现可用内存不足时,则内核会阻塞请求分配内存的进程分配内存的过程,并在该进程中去执行lowmemorykiller来释放内存

struct shrinker 的定义在 linux/kernel/include/linux/shrinker.h,具体如下:

struct shrinker {int (*shrink)(struct shrinker *, struct shrink_control *sc);int seeks;/* seeks to recreate an obj */long batch;/* reclaim batch size, 0 = default *//* These are for internal use */struct list_head list;atomic_long_t nr_in_batch; /* objs pending delete */
};
#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
extern void register_shrinker(struct shrinker *);
extern void unregister_shrinker(struct shrinker *);
#endif

‍所以,只要注册 shrinker,就可以在内存分页回收时根据规则释放内存。下面我们来看看lowmemorykiller 的具体实现。首先是定义 shrinker 结构体,lowmem_shrink 为回调函数的指针,当有内存分页回收的时候,获其他有需要的时机,这个函数将会被调用。

static struct shrinker lowmem_shrinker = {.shrink = lowmem_shrink,.seeks = DEFAULT_SEEKS * 16
};

初始化模块时进行注册,模块退出时注销。

static int __init lowmem_init(void)
{register_shrinker(&lowmem_shrinker);return 0;
}
static void __exit lowmem_exit(void)
{unregister_shrinker(&lowmem_shrinker);
}

Android 中,存在着一张内存阈值表,这张阈值表是可以在 init.rc 中进行配置的,合理配置这张表,对于小内存设备有非常重要的作用。我们来看 lowmemorykiller.c 中这张默认的阈值表:

static int lowmem_adj[6] = {0,1,6,12,
};
static int lowmem_adj_size = 4;
static int lowmem_minfree[6] = {3 * 512,/* 6MB */2 * 1024,/* 8MB */4 * 1024,/* 16MB */16 * 1024,/* 64MB */
};
static int lowmem_minfree_size = 4;

lowmem_adj 中各项数值代表阈值的警戒级数,lowmem_minfree 代表对应级数的剩余内存。也就是说,当系统的可用内存小于6MB时,警戒级数为0;当系统可用内存小于8M而大于6M时,警戒级数为1;当可用内存小于64M大于16MB时,警戒级数为12。Low memory killer的规则就是根据当前系统的可用内存多少来获取当前的警戒级数,如果进程的oom_adj大于警戒级数并且最大,进程将会被杀死(具有相同omm_adj的进程,则杀死占用内存较多的)。omm_adj越小,代表进程越重要。一些前台的进程,oom_adj会比较小,而后台的服务,omm_adj会比较大,所以当内存不足的时候,Low memory killer必然先杀掉的是后台服务而不是前台的进程。

OK,现在我们来看具体代码,也就是lowmem_shrink这个回调函数,先来:

static int lowmem_minfree_size = 4;static unsigned long lowmem_deathpending_timeout;#define lowmem_print(level, x...)\do {\if (lowmem_debug_level >= (level))\printk(x);\} while (0)static int lowmem_shrink(struct shrinker *s, struct shrink_control *sc)
{struct task_struct *tsk;struct task_struct *selected = NULL;int rem = 0;int tasksize;int i;int min_score_adj = OOM_SCORE_ADJ_MAX + 1;int selected_tasksize = 0;int selected_oom_score_adj;int array_size = ARRAY_SIZE(lowmem_adj);int other_free = global_page_state(NR_FREE_PAGES) - totalreserve_pages;int other_file = global_page_state(NR_FILE_PAGES) - global_page_state(NR_SHMEM);if (lowmem_adj_size < array_size)array_size = lowmem_adj_size;if (lowmem_minfree_size < array_size)array_size = lowmem_minfree_size;for (i = 0; i < array_size; i++) {if (other_free < lowmem_minfree[i] &&other_file < lowmem_minfree[i]) {min_score_adj = lowmem_adj[i];break;}}if (sc->nr_to_scan > 0)lowmem_print(3, "lowmem_shrink %lu, %x, ofree %d %d, ma %d\n",sc->nr_to_scan, sc->gfp_mask, other_free,other_file, min_score_adj);rem = global_page_state(NR_ACTIVE_ANON) +global_page_state(NR_ACTIVE_FILE) +global_page_state(NR_INACTIVE_ANON) +global_page_state(NR_INACTIVE_FILE);if (sc->nr_to_scan <= 0 || min_score_adj == OOM_SCORE_ADJ_MAX + 1) {lowmem_print(5, "lowmem_shrink %lu, %x, return %d\n",sc->nr_to_scan, sc->gfp_mask, rem);return rem;}selected_oom_score_adj = min_score_adj;rcu_read_lock();for_each_process(tsk) {struct task_struct *p;int oom_score_adj;if (tsk->flags & PF_KTHREAD)continue;p = find_lock_task_mm(tsk);if (!p)continue;if (test_tsk_thread_flag(p, TIF_MEMDIE) &&time_before_eq(jiffies, lowmem_deathpending_timeout)) {task_unlock(p);rcu_read_unlock();return 0;}oom_score_adj = p->signal->oom_score_adj;if (oom_score_adj < min_score_adj) {task_unlock(p);continue;}tasksize = get_mm_rss(p->mm);task_unlock(p);if (tasksize <= 0)continue;if (selected) {if (oom_score_adj < selected_oom_score_adj)continue;if (oom_score_adj == selected_oom_score_adj &&tasksize <= selected_tasksize)continue;}selected = p;selected_tasksize = tasksize;selected_oom_score_adj = oom_score_adj;lowmem_print(2, "select %d (%s), adj %d, size %d, to kill\n",p->pid, p->comm, oom_score_adj, tasksize);}if (selected) {lowmem_print(1, "send sigkill to %d (%s), adj %d, size %d\n",selected->pid, selected->comm,selected_oom_score_adj, selected_tasksize);lowmem_deathpending_timeout = jiffies + HZ;send_sig(SIGKILL, selected, 0);set_tsk_thread_flag(selected, TIF_MEMDIE);rem -= selected_tasksize;}lowmem_print(4, "lowmem_shrink %lu, %x, return %d\n",sc->nr_to_scan, sc->gfp_mask, rem);rcu_read_unlock();return rem;
}

第22行至第35行。通过global_page_state()函数获取系统当前可用的内存大小,然后根据可用内存大小及内存阈值表,来计算系统当前的警戒等级。

第40行,计算rem值。

第44行至第48行这个if-block,发现此时系统的内存状况还是很不错的,于是就什麽也不做,直接返回了。

第49行至第90行,遍历系统中所有的进程,选中将要杀掉的那个进程。第56行,跳过内核线程,内核线程不参加这个杀进程的游戏。第69行至第73行,进程的oom_score_adj小于警戒阈值,则无视。第74行,获取进程所占用的内存大小,RSS值。第78行至第84行,如果这个进程的oom_score_adj小于我们已经选中的那个进程的oom_score_adj,或者这个进程的oom_score_adj等于我们已经选中的那个进程的oom_score_adj,但其所占用的内存大小tasksize小于我们已经选中的那个进程所占用内存大小,则继续寻找下一个进程。第85至第89行,选中正在遍历的这个的进程,更新selected_tasksize为这个进程所占用的内存大小tasksize,更新selected_oom_score_adj为这个进程的oom_score_adj。

第91行至第99行,杀死选中的进程。先是更新lowmem_deathpending_timeout,然后便是给进程发送一个signal SIGKILL,接下来是设置进程的标记为TIF_MEMDIE,最后则是更新一下rem的值。

adj值的设置

在 lowmemorykiller 的code中我们有看到一个默认的阈值表。如我们前面所提到的那样,各种各样的设备、产品也可以自己定制这个值。这种定制主要是通过导出一些内核变量来实现的,具体代码如下:

#ifdef CONFIG_ANDROID_LOW_MEMORY_KILLER_AUTODETECT_OOM_ADJ_VALUES
static int lowmem_oom_adj_to_oom_score_adj(int oom_adj)
{if (oom_adj == OOM_ADJUST_MAX)return OOM_SCORE_ADJ_MAX;elsereturn (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
}static void lowmem_autodetect_oom_adj_values(void)
{int i;int oom_adj;int oom_score_adj;int array_size = ARRAY_SIZE(lowmem_adj);if (lowmem_adj_size < array_size)array_size = lowmem_adj_size;if (array_size <= 0)return;oom_adj = lowmem_adj[array_size - 1];if (oom_adj > OOM_ADJUST_MAX)return;oom_score_adj = lowmem_oom_adj_to_oom_score_adj(oom_adj);if (oom_score_adj <= OOM_ADJUST_MAX)return;lowmem_print(1, "lowmem_shrink: convert oom_adj to oom_score_adj:\n");for (i = 0; i < array_size; i++) {oom_adj = lowmem_adj[i];oom_score_adj = lowmem_oom_adj_to_oom_score_adj(oom_adj);lowmem_adj[i] = oom_score_adj;lowmem_print(1, "oom_adj %d => oom_score_adj %d\n",oom_adj, oom_score_adj);}
}static int lowmem_adj_array_set(const char *val, const struct kernel_param *kp)
{int ret;ret = param_array_ops.set(val, kp);/* HACK: Autodetect oom_adj values in lowmem_adj array */lowmem_autodetect_oom_adj_values();return ret;
}static int lowmem_adj_array_get(char *buffer, const struct kernel_param *kp)
{return param_array_ops.get(buffer, kp);
}static void lowmem_adj_array_free(void *arg)
{param_array_ops.free(arg);
}static struct kernel_param_ops lowmem_adj_array_ops = {.set = lowmem_adj_array_set,.get = lowmem_adj_array_get,.free = lowmem_adj_array_free,
};static const struct kparam_array __param_arr_adj = {.max = ARRAY_SIZE(lowmem_adj),.num = &lowmem_adj_size,.ops = &param_ops_int,.elemsize = sizeof(lowmem_adj[0]),.elem = lowmem_adj,
};
#endifmodule_param_named(cost, lowmem_shrinker.seeks, int, S_IRUGO | S_IWUSR);
#ifdef CONFIG_ANDROID_LOW_MEMORY_KILLER_AUTODETECT_OOM_ADJ_VALUES
__module_param_call(MODULE_PARAM_PREFIX, adj,&lowmem_adj_array_ops,.arr = &__param_arr_adj,S_IRUGO | S_IWUSR, -1);
__MODULE_PARM_TYPE(adj, "array of int");
#else
module_param_array_named(adj, lowmem_adj, int, &lowmem_adj_size,S_IRUGO | S_IWUSR);
#endif
module_param_array_named(minfree, lowmem_minfree, uint, &lowmem_minfree_size,S_IRUGO | S_IWUSR);
module_param_named(debug_level, lowmem_debug_level, uint, S_IRUGO | S_IWUSR);

lowmemorykiller 在此处总共导出了4个内核变量,其中两个是内核数组。我们可以在如下位置访问到这些内核变量:/sys/module/lowmemorykiller/parameters。在 init.rc 文件中会设置这些内核变量的属性(system/core/rootdir/init.rc),以便于后面系统对这些值进行修改:

281    chown root system /sys/module/lowmemorykiller/parameters/adj
282    chmod 0664 /sys/module/lowmemorykiller/parameters/adj
283    chown root system /sys/module/lowmemorykiller/parameters/minfree
284    chmod 0664 /sys/module/lowmemorykiller/parameters/minfree

那通常情况下,比如在Nexus 7或类似的设备上,adj值又是在什麽时候设置的呢?设置的那些值依据是什麽呢,是一个经验值呢还是有什麽算法来算出那些值?

搜索android4.4.3_r1.1的整个codebase,我们发现lowmemorykiller所导出的那些值只在ProcessList.updateOomLevels()方法中被修改了。接着我们就来具体看一下这个方法的实现(实现此方法的文件位置为frameworks/base/services/java/com/android/server/am/ProcessList.java):

    // OOM adjustments for processes in various states:// Adjustment used in certain places where we don't know it yet.// (Generally this is something that is going to be cached, but we// don't know the exact value in the cached range to assign yet.)static final int UNKNOWN_ADJ = 16;// This is a process only hosting activities that are not visible,// so it can be killed without any disruption.static final int CACHED_APP_MAX_ADJ = 15;static final int CACHED_APP_MIN_ADJ = 9;// The B list of SERVICE_ADJ -- these are the old and decrepit// services that aren't as shiny and interesting as the ones in the A list.static final int SERVICE_B_ADJ = 8;// This is the process of the previous application that the user was in.// This process is kept above other things, because it is very common to// switch back to the previous app.  This is important both for recent// task switch (toggling between the two top recent apps) as well as normal// UI flow such as clicking on a URI in the e-mail app to view in the browser,// and then pressing back to return to e-mail.static final int PREVIOUS_APP_ADJ = 7;// This is a process holding the home application -- we want to try// avoiding killing it, even if it would normally be in the background,// because the user interacts with it so much.static final int HOME_APP_ADJ = 6;// This is a process holding an application service -- killing it will not// have much of an impact as far as the user is concerned.static final int SERVICE_ADJ = 5;// This is a process with a heavy-weight application.  It is in the// background, but we want to try to avoid killing it.  Value set in// system/rootdir/init.rc on startup.static final int HEAVY_WEIGHT_APP_ADJ = 4;// This is a process currently hosting a backup operation.  Killing it// is not entirely fatal but is generally a bad idea.static final int BACKUP_APP_ADJ = 3;// This is a process only hosting components that are perceptible to the// user, and we really want to avoid killing them, but they are not// immediately visible. An example is background music playback.static final int PERCEPTIBLE_APP_ADJ = 2;// This is a process only hosting activities that are visible to the// user, so we'd prefer they don't disappear.static final int VISIBLE_APP_ADJ = 1;// This is the process running the current foreground app.  We'd really// rather not kill it!static final int FOREGROUND_APP_ADJ = 0;// This is a system persistent process, such as telephony.  Definitely// don't want to kill it, but doing so is not completely fatal.static final int PERSISTENT_PROC_ADJ = -12;// The system process runs at the default adjustment.static final int SYSTEM_ADJ = -16;// Special code for native processes that are not being managed by the system (so// don't have an oom adj assigned by the system).static final int NATIVE_ADJ = -17;// Memory pages are 4K.static final int PAGE_SIZE = 4*1024;// These are the various interesting memory levels that we will give to// the OOM killer.  Note that the OOM killer only supports 6 slots, so we// can't give it a different value for every possible kind of process.private final int[] mOomAdj = new int[] {FOREGROUND_APP_ADJ, VISIBLE_APP_ADJ, PERCEPTIBLE_APP_ADJ,BACKUP_APP_ADJ, CACHED_APP_MIN_ADJ, CACHED_APP_MAX_ADJ};// These are the low-end OOM level limits.  This is appropriate for an// HVGA or smaller phone with less than 512MB.  Values are in KB.private final long[] mOomMinFreeLow = new long[] {8192, 12288, 16384,24576, 28672, 32768};// These are the high-end OOM level limits.  This is appropriate for a// 1280x800 or larger screen with around 1GB RAM.  Values are in KB.private final long[] mOomMinFreeHigh = new long[] {49152, 61440, 73728,86016, 98304, 122880};// The actual OOM killer memory levels we are using.private final long[] mOomMinFree = new long[mOomAdj.length];private final long mTotalMemMb;private void updateOomLevels(int displayWidth, int displayHeight, boolean write) {// Scale buckets from avail memory: at 300MB we use the lowest values to// 700MB or more for the top values.float scaleMem = ((float)(mTotalMemMb-300))/(700-300);// Scale buckets from screen size.int minSize = 480*800;  //  384000int maxSize = 1280*800; // 1024000  230400 870400  .264float scaleDisp = ((float)(displayWidth*displayHeight)-minSize)/(maxSize-minSize);if (false) {Slog.i("XXXXXX", "scaleMem=" + scaleMem);Slog.i("XXXXXX", "scaleDisp=" + scaleDisp + " dw=" + displayWidth+ " dh=" + displayHeight);}StringBuilder adjString = new StringBuilder();StringBuilder memString = new StringBuilder();float scale = scaleMem > scaleDisp ? scaleMem : scaleDisp;if (scale < 0) scale = 0;else if (scale > 1) scale = 1;int minfree_adj = Resources.getSystem().getInteger(com.android.internal.R.integer.config_lowMemoryKillerMinFreeKbytesAdjust);int minfree_abs = Resources.getSystem().getInteger(com.android.internal.R.integer.config_lowMemoryKillerMinFreeKbytesAbsolute);if (false) {Slog.i("XXXXXX", "minfree_adj=" + minfree_adj + " minfree_abs=" + minfree_abs);}for (int i=0; i<mOomAdj.length; i++) {long low = mOomMinFreeLow[i];long high = mOomMinFreeHigh[i];mOomMinFree[i] = (long)(low + ((high-low)*scale));}if (minfree_abs >= 0) {for (int i=0; i<mOomAdj.length; i++) {mOomMinFree[i] = (long)((float)minfree_abs * mOomMinFree[i] / mOomMinFree[mOomAdj.length - 1]);}}if (minfree_adj != 0) {for (int i=0; i<mOomAdj.length; i++) {mOomMinFree[i] += (long)((float)minfree_adj * mOomMinFree[i] / mOomMinFree[mOomAdj.length - 1]);if (mOomMinFree[i] < 0) {mOomMinFree[i] = 0;}}}// The maximum size we will restore a process from cached to background, when under// memory duress, is 1/3 the size we have reserved for kernel caches and other overhead// before killing background processes.mCachedRestoreLevel = (getMemLevel(ProcessList.CACHED_APP_MAX_ADJ)/1024) / 3;for (int i=0; i<mOomAdj.length; i++) {if (i > 0) {adjString.append(',');memString.append(',');}adjString.append(mOomAdj[i]);memString.append((mOomMinFree[i]*1024)/PAGE_SIZE);}// Ask the kernel to try to keep enough memory free to allocate 3 full// screen 32bpp buffers without entering direct reclaim.int reserve = displayWidth * displayHeight * 4 * 3 / 1024;int reserve_adj = Resources.getSystem().getInteger(com.android.internal.R.integer.config_extraFreeKbytesAdjust);int reserve_abs = Resources.getSystem().getInteger(com.android.internal.R.integer.config_extraFreeKbytesAbsolute);if (reserve_abs >= 0) {reserve = reserve_abs;}if (reserve_adj != 0) {reserve += reserve_adj;if (reserve < 0) {reserve = 0;}}//Slog.i("XXXXXXX", "******************************* MINFREE: " + memString);if (write) {writeFile("/sys/module/lowmemorykiller/parameters/adj", adjString.toString());writeFile("/sys/module/lowmemorykiller/parameters/minfree", memString.toString());SystemProperties.set("sys.sysctl.extra_free_kbytes", Integer.toString(reserve));}// GB: 2048,3072,4096,6144,7168,8192// HC: 8192,10240,12288,14336,16384,20480}

adj值是一组写死的固定的值,具体可以参考mOomAdj的定义。

第123行至第127行,是第一轮计算各个adj所对应的minimum free memory阈值。计算各个值的算式为(long)(low + ((high-low)*scale))。low值和high值都是预定义的固定的经验值,比较关键的是那个scale值。在前面计算scale的部分,我们可以看到,它会先计算一个memory的scale值(为((float)(mTotalMemMb-300))/(700-300)),再计算一个屏幕分辨率的scale值(((float)(displayWidth*displayHeight)-minSize)/(maxSize-minSize)),首先取scale值为这两个scale值中较大的那一个。再然后是一些容错处理,将scale值限制在0~1之间,以防止设备内存小于300MB,同时设备分辨率小于480*800;或者,设备内存大于700MB,或设备分辨率大于1280*800的情况出现时,出现太不合理的阈值。

第129行至133行,是第二轮计算各个adj所对应的minimum free memory阈值。计算各个值的算式为(long)((float)minfree_abs * mOomMinFree[i] / mOomMinFree[mOomAdj.length - 1])。此处给了各设备对low memory阈值进行定制的机会。各个设备可以在framework的config文件中定义config_lowMemoryKillerMinFreeKbytesAbsolute,以指定最大的adj所对应的free memory阈值,其他各个adj所对应的free memory阈值将依比例算出。

第135行至第142行,是第三轮计算各个adj所对应的minimum free memory阈值。计算各个值的算式为mOomMinFree[i] += (long)((float)minfree_adj * mOomMinFree[i] / mOomMinFree[mOomAdj.length - 1])。此处是给特定设备微调low memory的阈值提供机会。不过我们仔细来看第二轮和第三轮的计算,这两轮计算似乎是可以合并为:(long)((float)(minfree_abs + minfree_adj) * mOomMinFree[i] / mOomMinFree[mOomAdj.length - 1])。

后面则是构造适合设置给lowmemorykiller导出参数的字符串,并最终将构造的这组参数设置进去。

那这个ProcessList.updateOomLevels()方法又是在什麽时候会被调用到呢?是在ProcessList.applyDisplaySize()方法中:

    void applyDisplaySize(WindowManagerService wm) {if (!mHaveDisplaySize) {Point p = new Point();wm.getBaseDisplaySize(Display.DEFAULT_DISPLAY, p);if (p.x != 0 && p.y != 0) {updateOomLevels(p.x, p.y, true);mHaveDisplaySize = true;}}}

在这个方法中,当能够从WMS中获取有效的屏幕分辨率时,会去更新oom levels,并且更新之后就不会再次去更新。我们再来追查ProcessList.applyDisplaySize(),是在ActivityManagerService.updateConfiguration():

    public void updateConfiguration(Configuration values) {enforceCallingPermission(android.Manifest.permission.CHANGE_CONFIGURATION,"updateConfiguration()");synchronized(this) {if (values == null && mWindowManager != null) {// sentinel: fetch the current configuration from the window managervalues = mWindowManager.computeNewConfiguration();}if (mWindowManager != null) {mProcessList.applyDisplaySize(mWindowManager);}final long origId = Binder.clearCallingIdentity();if (values != null) {Settings.System.clearConfiguration(values);}updateConfigurationLocked(values, null, false, false);Binder.restoreCallingIdentity(origId);}}

我们总结一下OOM levels的更新:时机是在系统启动后,第一个configuration change的消息到AMS的时候;adj值为一组固定的预定义的值;各个adj所对应的min free阈值则根据系统的内存大小和屏幕的分辨率计算得出,各个设备还可以通过framework的config config_lowMemoryKillerMinFreeKbytesAdjust和config_lowMemoryKillerMinFreeKbytesAbsolute来定制最终各个adj所对应的min free阈值。

我们可以根据系统所吐出来的log看一下,事实是否如我们上面对code的分析那样。由某个设备抓到的系统内核吐出来的log,可以发现如下的这些行(只出现一次):

I/KERNEL  (  609): [   14.064905] lowmemorykiller: lowmem_shrink: convert oom_adj to oom_score_adj:
I/KERNEL  (  609): [   14.064932] lowmemorykiller: oom_adj 0 => oom_score_adj 0
I/KERNEL  (  609): [   14.064938] lowmemorykiller: oom_adj 1 => oom_score_adj 58
I/KERNEL  (  609): [   14.064942] lowmemorykiller: oom_adj 2 => oom_score_adj 117
I/KERNEL  (  609): [   14.064947] lowmemorykiller: oom_adj 3 => oom_score_adj 176
I/KERNEL  (  609): [   14.064951] lowmemorykiller: oom_adj 9 => oom_score_adj 529
I/KERNEL  (  609): [   14.064956] lowmemorykiller: oom_adj 15 => oom_score_adj 1000

由前面lowmemorykiller的code不难看出,这些log在lowmem_autodetect_oom_adj_values()函数中吐出,是在内核空间吐出来的。吐出这些log的进程的pid为609。我们再来看一下这个进程到底是何方神圣:

desktop:~/develop_tools$ adb shell ps | grep 609
system    609   235   1031532 94240 ffffffff ffffe430 S system_server

谜底揭晓,是system_server。不难推测出来,这应当是在系统启动之后,AMS第一次接到configuration change的消息,去更新OOM level,lowmemorykiller的lowmem_autodetect_oom_adj_values()函数被调到,更新lowmemorykiller的lowmem_adj时而吐出来的。与我们前面对AMS code的分析基本一致。

还需要我们厘清的问题,lowmemorykiller的lowmem_shrink具体在什麽时机会被执行?

Done。

这篇关于Android low memory killer 机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/921307

相关文章

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable