Linux Buddy系统算法源码解析

2024-04-20 20:38

本文主要是介绍Linux Buddy系统算法源码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Linux引导起来之后,伙伴系统分配算法是和物理内存最底层的接口。所有内存分配函数,比如vmalloc/kmalloc最后都是通过伙伴算法对内存进行分配的。接下来我们将解读一下伙伴系统的分配和回收算法。

伙伴系统模块提供了两个主要的接口给上层程序,他们是:

1.         页面请求函数

struct page * fastcall __alloc_pages(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist)

2.         页面释放函数

fastcall void __free_pages(struct page *page, unsigned int order)

【注】:在这里我对fastcall进行说明一下,他指明了函数参数传递的方式,前8个字节通过寄存器传入,后面多出来的通过栈传入,入栈顺序是从右到左。

 

下面分别对两个函数进行源码级的分析。

1.         页面分配

a)         如果请求的内存大小正好是一个页面,则需要从该CPU的冷热页面队列中进行分配。

       if (likely(order == 0)) {

              struct per_cpu_pages *pcp;

              pcp = &zone_pcp(zone, cpu)->pcp[cold]; // 获取冷热页面队列的指针。

              local_irq_save(flags);

              if (!pcp->count) { // 如果发现页面队列中的页面数为0,需要从伙伴系统中申请一组页面,填充页面队列。

                     pcp->count += rmqueue_bulk(zone, 0,

                                          pcp->batch, &pcp->list);

                     if (unlikely(!pcp->count))

                            goto failed;

              }

              // 从队列中取出一页分配出去

              page = list_entry(pcp->list.next, struct page, lru);

              list_del(&page->lru);

              // 计数器减一

              pcp->count--;

 

b)        如果申请的物理内存大于1个页面,直接从伙伴系统中申请

spin_lock_irqsave(&zone->lock, flags);

              page = __rmqueue(zone, order); // 访问伙伴系统

              spin_unlock(&zone->lock);

              if (!page)

                     goto failed;

 

c)        对刚才分配的页面进行一系列的检查。检查失败需要重新从伙伴系统进行分配。并且对该页面进行相应的初始化。

       if (prep_new_page(page, order))

              goto again;

d)        是否需要对页面进行清零操作

       if (gfp_flags & __GFP_ZERO)

              prep_zero_page(page, order, gfp_flags);

e)         如果从伙伴系统中申请的页面不是一个页面,即order > 1,我们称之为一个compound页面。下面需要初始化compound页面。通过设置页面的标志位来表示他是一个compound页面。

set_bit(PG_compound, &(page)->flags)

f)         如果以上过程页面分配成功,则完成分配,如果不成功,继续下面的尝试。

g)        kswapd内核线程唤醒,换出一些页面。

       do {

              wakeup_kswapd(*z, order);

       } while (*(++z));

h)        从伙伴系统中,尝试再次分配页面。

       page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);

       if (page)

              goto got_pg;

i)          如果发现该任务是专用于分配内存的(PF_MEMALLOC)并且不处于中断处理函数中,则强制性的分配内存,也就是说不管有没有到每个内存区的地水位线,都给他分配,除非是真的没得分配了。

       if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))

                     && !in_interrupt()) {

              if (!(gfp_mask & __GFP_NOMEMALLOC)) {

nofail_alloc:

                     /* go through the zonelist yet again, ignoring mins */

                     page = get_page_from_freelist(gfp_mask, order,

                            zonelist, ALLOC_NO_WATERMARKS);

                     if (page)

                            goto got_pg;

                     if (gfp_mask & __GFP_NOFAIL) {

                            blk_congestion_wait(WRITE, HZ/50);

                            goto nofail_alloc;

                     }

              }

              goto nopage; // 表示没有页面可以分配了。

       }

j)          如果不是特殊任务,则系统尝试将各个区的内存进行一个rebalance的动作,就是回收些内存。

did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);

然后在尝试分配:

              page = get_page_from_freelist(gfp_mask, order,

                                          zonelist, alloc_flags);

              if (page)

                     goto got_pg;

       如果分配失败,就终止请求页面的进程。

              out_of_memory(zonelist, gfp_mask, order);

 

       我们接下来分析一下从伙伴系统申请页面的函数。

       static struct page *__rmqueue(struct zone *zone, unsigned int order)

       从空闲表中当前order进行查找,找到第一个有空闲块的order,叫做current_order,然后进行分配,有两种情况,第一种情况:刚好current_order就是请求的order,则不需要合并。第二种情况:current_order是大于请求的order的,这种情况,是需要进行页面块的拆分和合并的。调用expand函数。通过设置相邻页面的PG_buddy位来表示他们是伙伴。

       for (current_order = order; current_order < MAX_ORDER; ++current_order) {

              area = zone->free_area + current_order;

              if (list_empty(&area->free_list))

                     continue;

 

              page = list_entry(area->free_list.next, struct page, lru);

              list_del(&page->lru);

              rmv_page_order(page);

              area->nr_free--;

              zone->free_pages -= 1UL << order;

              expand(zone, page, order, current_order, area);

              return page;

       }

 

2.         页面释放

fastcall void __free_pages(struct page *page, unsigned int order)

a)         先测试该页面的引用计数器是不是为1,否则不能释放,因为其他进程可能引用了该页面。

       if (put_page_testzero(page))

b)        如果释放的页面为1,则释放到热页面队列中去。否则直接释放到伙伴系统中去。

              if (order == 0)

                     free_hot_page(page);

              else

                     __free_pages_ok(page, order);

接下来我们分析一下释放一个页面到伙伴系统的代码:

static inline void __free_one_page(struct page *page, struct zone *zone, unsigned int order)

1.         如果是compound页面,先清除页面标志位PG_compound

       if (unlikely(PageCompound(page)))

              destroy_compound_page(page, order);

2.         查找伙伴块,并对伙伴块进行合并,最后将合并后的块插入到新的order中去。这个过程一直持续下去,直到伙伴块合并完为止。

       while (order < MAX_ORDER-1) {

              unsigned long combined_idx;

              struct free_area *area;

              struct page *buddy;

 

              buddy = __page_find_buddy(page, page_idx, order);

              if (!page_is_buddy(buddy, order))

                     break;            /* Move the buddy up one level. */

 

              list_del(&buddy->lru);

              area = zone->free_area + order;

              area->nr_free--;

              rmv_page_order(buddy);

              combined_idx = __find_combined_index(page_idx, order);

              page = page + (combined_idx - page_idx);

              page_idx = combined_idx;

              order++;

       }

 

这篇关于Linux Buddy系统算法源码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/921270

相关文章

linux hostname设置全过程

《linuxhostname设置全过程》:本文主要介绍linuxhostname设置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录查询hostname设置步骤其它相关点hostid/etc/hostsEDChina编程A工具license破解注意事项总结以RHE

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决