ELK 与 EFK的介绍和对比

2024-04-20 20:04
文章标签 介绍 elk 对比 efk

本文主要是介绍ELK 与 EFK的介绍和对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ELK 与 EFK的介绍和对比

ELK 和 EFK 分别是两种开源日志管理和分析平台的缩写,它们均基于 Elasticsearch、Kibana 这两个核心组件,但在日志收集阶段采用了不同的工具。下面详细解释这两个术语:

ELK Stack

ELK 是指 Elasticsearch, Logstash, Kibana 三个开源项目的组合:

  • Elasticsearch: 一个分布式、实时的搜索和分析引擎,用于存储和检索日志数据。它提供了全文搜索、聚合分析等功能,且支持横向扩展以处理大规模数据。

  • Logstash: 一个强大的数据收集、转换和传输工具,负责接收日志数据,对其进行解析、过滤、丰富等处理,然后将处理后的数据发送到 Elasticsearch 中存储。Logstash 支持多种输入源(如文件、网络接口、数据库等)、丰富的过滤插件以及多种输出目标(包括 Elasticsearch)。

  • Kibana: 一个可视化平台,用于对存储在 Elasticsearch 中的数据进行交互式探索、分析和可视化呈现。Kibana 提供了直观的仪表板、图表、地图等多种视图,使得用户可以轻松查询、分析日志数据,并创建自定义监控界面。

EFK Stack

EFK 是指 Elasticsearch, Filebeat or Fluentd, Kibana 的组合:

  • ElasticsearchKibana 在 EFK 中的作用与 ELK 中相同,分别作为日志数据的存储和分析展示平台。

  • FilebeatFluentd 替代了 ELK 中的 Logstash,作为轻量级的日志收集器:

    • Filebeat: 由 Elastic 公司开发,专为日志收集而设计,具有资源占用低、易于部署的特点。Filebeat 直接从服务器上的日志文件读取数据,对日志进行初步的归集和简单处理(如多行合并、添加元数据),然后将其转发到 Elasticsearch 或其他中间件(如 Logstash、Kafka)。

    • Fluentd: 一个统一的日志收集层,由 Fluentd 社区维护。Fluentd 可以从多种来源(如文件、标准输出、数据库等)收集日志,并通过插件机制提供丰富的数据解析、过滤和转换功能。处理后的日志数据被发送到指定的后端存储(如 Elasticsearch)或消息队列(如 Kafka)。

ELK 与 EFK 的主要区别:

  • 日志收集阶段:ELK 使用 Logstash 作为集中式的日志处理器,它功能强大但相对资源消耗较高,适合复杂的数据清洗、转换场景。而 EFK 更倾向于采用 Filebeat 或 Fluentd,两者都是轻量级的日志收集代理,资源占用少,更适合大规模部署,尤其是在容器环境中。

  • 架构灵活性:EFK 提供了 Filebeat 和 Fluentd 两种选择,可以根据项目需求、现有环境和技术栈偏好来决定使用哪一个。Filebeat 更简洁易用,与 Elastic 生态深度集成;Fluentd 功能更全面,插件生态系统丰富,支持更多的数据源和输出目标。

  • 性能和资源优化:由于 Filebeat 和 Fluentd 相对于 Logstash 资源消耗更低,EFK 方案在大规模部署时可能带来更好的性能和更低的运维成本。尤其是对于容器化环境中的微服务架构,每个容器内部署一个轻量级的日志收集器更为高效。

综上所述,ELK 和 EFK 主要的区别在于日志收集阶段所使用的工具,前者使用 Logstash,后者使用 Filebeat 或 Fluentd。选择 ELK 还是 EFK,通常取决于具体应用场景的需求、资源预算、现有技术栈以及对日志处理复杂度的要求。随着技术的发展,业界越来越多地倾向于采用 EFK 方案,特别是在容器云环境中,以适应现代分布式系统对日志管理的轻量化、高性能要求。同时,也有其他日志管理解决方案如 Grafana Loki 等可供考虑。

这篇关于ELK 与 EFK的介绍和对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/921196

相关文章

Python实现Microsoft Office自动化的几种方式及对比详解

《Python实现MicrosoftOffice自动化的几种方式及对比详解》办公自动化是指利用现代化设备和技术,代替办公人员的部分手动或重复性业务活动,优质而高效地处理办公事务,实现对信息的高效利用... 目录一、基于COM接口的自动化(pywin32)二、独立文件操作库1. Word处理(python-d

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

python中字符串拼接的几种方法及优缺点对比详解

《python中字符串拼接的几种方法及优缺点对比详解》在Python中,字符串拼接是常见的操作,Python提供了多种方法来拼接字符串,每种方法有其优缺点和适用场景,以下是几种常见的字符串拼接方法,需... 目录1. 使用 + 运算符示例:优缺点:2. 使用&nbsjsp;join() 方法示例:优缺点:3

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Python实现html转png的完美方案介绍

《Python实现html转png的完美方案介绍》这篇文章主要为大家详细介绍了如何使用Python实现html转png功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 1.增强稳定性与错误处理建议使用三层异常捕获结构:try: with sync_playwright(

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字

JAVA SE包装类和泛型详细介绍及说明方法

《JAVASE包装类和泛型详细介绍及说明方法》:本文主要介绍JAVASE包装类和泛型的相关资料,包括基本数据类型与包装类的对应关系,以及装箱和拆箱的概念,并重点讲解了自动装箱和自动拆箱的机制,文... 目录1. 包装类1.1 基本数据类型和对应的包装类1.2 装箱和拆箱1.3 自动装箱和自动拆箱2. 泛型2