C++ 命名空间、引用、指针、容器、强转、类、友元函数、友元类、单例、重载操作符、继承、多态、虚函数、模板(泛型)

本文主要是介绍C++ 命名空间、引用、指针、容器、强转、类、友元函数、友元类、单例、重载操作符、继承、多态、虚函数、模板(泛型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

命名空间
类似包名 区分重名

using namespace std;//命名空间
namespace first_space {void fun() {cout << "first_space" << endl;}
}
namespace second_space {void fun() {cout << "second_space" << endl;}
}int main(int argc, const char * argv[]) {//命名空间first_space::fun();second_space::fun();return 0;
}//first_space
//second_space

引用 和 指针
在这里插入图片描述

引用直接用& 即可
int& r = xxxx;

//引用int iforYinYong = 10;double dforYinYong = 9.0;int* pYinYong = &iforYinYong;  //指针int& r = iforYinYong;	//引用cout << "Value of iForYinYong reference: " << r << endl;

容器

#include <vector>
#include <set>
#include <map>int main(int argc, const char * argv[]) {//容器  stl: 标准模板库//序列式 关联式//序列式容器:元素排列顺序 与 元素本身 无关,由添加顺序决定。 stack//vector list dequeue queue stack priority queuevector<int> vec1;//声明 一个元素空间vector<int> vec2(1);//6个元素 值都是1vector<int> vec3(6, 1);vector<int> vec4(vec3);//添加元素vec1.push_back(10);//通过下标 获取元素cout << "通过下标获取元素:" << vec1[0] << endl;//获取对头 队尾的元素vec1.front();vec1.back();vec1.clear();//清空vec1.erase(vec1.begin(), vec1.end());//区间cout << "容器大小: " << vec1.capacity() << endl; //容器大小//关联式 set map hashmap//set 集合  元素不可重复set<int> set1 = {1, 2, 3, 4};set1.insert(1); //已存在 不会加进去pair<set<int>::iterator, bool> _pair = set1.insert(6); //返回值 添加了什么,是否成功std::cout << "set集合里元素个数有:" << set1.size() << endl;set<int>::iterator itt = set1.begin();set1.end();//最后一个元素的 下一个元素for (; itt != set1.end(); itt++) {cout << *itt << endl;}//mapmap<int, string> map1;map<int, string> map2 = {{1, "a"}, {2, "b"}};map2.insert({3, "c"});//修改map2[1] = "d"; //1是keymap<int, string>::iterator ittm = map2.begin();for (; ittm != map2.end(); ittm++) {cout << ittm->first << ":" << ittm->second << endl;}
}

c的强转
在这里插入图片描述

C++ 分四种转换
在这里插入图片描述

在这里插入图片描述

class Parent {
public:void test() {cout << "p" << endl;}
};
class Child: public Parent {
public:void test() {cout << "c" << endl;}
};//强转//const_cast  相互转化const char *a7; //相当于java的finalchar *b7 = const_cast<char*>(a7);char *a8;const char *b8 = const_cast<const char*>(a8);//static_cast  基本类型转换  父子转换   编译时Parent *parent = new Parent;Child *c = static_cast<Child*>(parent);c->test();//dynamic_cast  运行时


通过有缘函数或者有缘类 可以访问修改私有成员

头文件 Student.h

#ifndef Student_h
#define Student_h
class Student {//友元函数friend void test(Student*);//友元类friend class Teacher;int i;public:Student(int i, int j);~Student();//析构函数void setJ(int j);void setK(int j) const;int getB() {return b;}int getA() {return a;}private:int a;private:int b;protected:int c;};class Teacher {public:void call(Student* s) {s->a = 1000;};};#endif /* Studentr_h */

Student.cpp

#include "Student.hpp"
#include "Student.h"
#include <iostream>
using namespace std;//相当于安卓里的 onCreate
Student::Student(int i, int j):i(i) {//:i(i) 省去写this 直接给成员变量赋值
//    this->i = i;cout << "构造方法" << endl;
}//可以通过方法给成员变量赋值
void Student::setJ(int j) {this->a = j;
}
//常量函数
//表示不会 也不允许 修改类中的成员
void Student::setK(int j) const{
//    this->a = j;
}//相当于安卓里的 onDestroy
Student::~Student() {cout << "析构方法" << endl;
}

main函数

#include <iostream>
#include "Student.h"void test(Student* stu) {stu->b = 100;
}int main(int argc, const char * argv[]) {//构造Student student(10, 20);test(&student);std::cout << student.getB() << std::endl;Teacher teacher;teacher.call(&student);std::cout << student.getA() << std::endl;return 0;
}

单例
Single.h

class Single{
private:static Single* instance;Single();public:static Single* getInstance();
};

Single.cpp

#include "Single.hpp"
#include "Single.h"
Single* Single::instance = 0;Single* Single::getInstance() {if (!instance) {instance = new Single();}return instance;
};

main

#include <iostream>
#include "Single.h"int main(int argc, const char * argv[]) {Single* single = Single::getInstance();std::cout << single <<  std::endl;return 0;
};

操作符
Test.h

#ifndef Test_h
#define Test_h
class Test {
public:int i;Test operator + (const Test& t) {Test temp;temp.i = this->i + t.i;return temp;};
};#endif /* Test_h */

main

#include <iostream>
#include "Test.h"
int main(int argc, const char * argv[]) {Test test1;test1.i = 100;Test test2;test2.i = 200;Test test3 = test1 + test2;std::cout << test3.i << std::endl;return 0;
}

继承
多态:父类引用指向子类对象
静态多态,调用的是父类方法。
动态多态,调用子类方法。
Extend.h

#ifndef Extend_h
#define Extend_h
#include <iostream>
using namespace std;
class Parent1 {
public://动态多态virtual void eatting() {cout << "parent1" << endl;}//纯虚函数 类似抽象方法virtual void abstractMethod() = 0;
};class Parent2 {
public:void eatting() {}
};class Child : public Parent1, Parent2 {
public:void eatting() {//super.eatting()Parent1::eatting();cout << "child" << endl;}//子类实现 纯虚函数  也就是抽象方法void abstractMethod() override {cout << "子类重写了父类的 抽象方法" << endl;};
};#endif /* Extend_h */

main

#include <iostream>
#include "Extend.h"
int main(int argc, const char * argv[]) {Child child;child.eatting();//静态多态Parent1* child2 = new Child();child2->eatting(); // 因为是静态 在编译时期,就认为是parent1的eatting方法,没等创建child呢。//动态多态 需要把 Parent1类的方法前 加关键字 virtual//将其声明为虚函数//注意事项:1、构造方法永远不要设置为虚函数  如果父类是 虚函数构造,子类就没办法创建了//       2、析构方法 声明为虚函数  好让真正的子类去释放内存return 0;
}

模板(泛型)

#include <iostream>
//泛型基础 模板编程//函数模板  java的泛型方法/**T method(T t) {}*/template <typename T>T methodA(T t1, T t2) {return t1 > t2 ? t1: t2;}//类模板  java的类泛型template <class T, class E>
class Q {
public:T test(T t, E e) {return t + e;}
};int main(int argc, const char * argv[]) {//方法模板int result = methodA(1, 2);std::cout << result << std::endl;//类模板Q<int, float> q;std::cout << q.test(1, 2.0) << std::endl;return 0;
}

这篇关于C++ 命名空间、引用、指针、容器、强转、类、友元函数、友元类、单例、重载操作符、继承、多态、虚函数、模板(泛型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/921171

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�