《走近大数据之Hive进阶》学习笔记(2)

2024-04-20 11:48

本文主要是介绍《走近大数据之Hive进阶》学习笔记(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

建议:请先看一下鄙人另一篇学习笔记《走近大数据之Hive入门》,再看这个进阶的效果更好!

http://blog.csdn.net/to_Baidu/article/details/52432217


第一章 课程简介

1-1 课程简介

Hive不支持传统数据库中insert插入操作,可通过load语句和sqoop进行数据的导入。
学习目标:
1. hive的数据导入;
2. hive的数据查询;
3. hive的java客户端和自定义函数。

学习的必备基础:
- hive的体系结构和基本操作
- java编程
- Linux的基本操作


第二章 Hive数据的导入

2-1 使用load语句执行数据的导入

使用load语句
-语法:load data [local] inpath ‘filepath’ [overwrite] into table tablename [partition (partcol1=val1, partcol2=val2,“`)]

例如:
–将student01.txt导入t2:
Load data local inpath ‘/root/data/student01.txt’ into table t2;
上面的这种方式一次只能导入一个文件,下面可实现多文件导入。
例如:
–将/root/data下的所有数据文件导入t3表中,并且覆盖原来的数据:
load data local inpath ‘/root/data/’ overwrite into table t3;
目录只要写到相关目录即可,不必具体指定到某个文件。

–将HDFS中/input/student01.txt导入到t3,此时不需要加local关键字:
load data inpath ‘/input/student01.txt’ overwrite into table t3;

–将data1.txt导入partition_table
load data local inpath ‘/root/data/data1.txt’ into table partition_table partition (gender=’M’);

2-2 使用sqoop进行数据的导入

Sqoop是apache下的一个框架,专门做数据的导入和导出。
Sqoop要先安装:下载,tar包安装,再设置两个环境变量即可。
Linux解压tar包的命令 :tar –zxvf 包名
#export HADOOP_COMMON_HOME-~hadoop的安装目录
#export HADOOP_MAPRED_HOME-~hadoop的安装目录

① 使用sqoop导入oracle数据到HDFS中,sqoop语句中的‘–’表示变量
./sqoop import –connect jdbc:oracle:thin:@192.168.56.101:1521:orcl –username scott –password tiger –table emp –columns ‘empno,ename,job,sal’ -m 1 –target-dir ‘/sqoop/emp’
注释:-m表示mapreduce的进程数,如次数进程数是一个
②使用sqoop导入oracle数据到hive中
./sqoop import –hive-import –connect jdbc:oracle:thin:@192.168.56.101:1521:orcl –username scott –password tiger –table emp –m 1 –columns ‘empno,ename,job,sal’
③使用sqoop导入oracle数据到hive中,并且指定表名
./sqoop import –hive-import –connect jdbc:oracle:thin:@192.168.56.101:1521:o**重点内容**rcl –username scott –password tiger –table emp –m 1 –columns ‘empno,ename,job,sal’ –hive-table emp1
④ 使用sqoop导入oracle数据到hive中,并使用where条件
./sqoop import –hive-import –connect jdbc:oracle:thin:@192.168.56.101:1521:orcl –username scott –password tiger –table emp –m 1 –columns ‘empno,ename,job,sal’ –hive-table emp2 –where ‘DEPTNO=10’
⑤ 使用sqoop导入oracle数据到hive中,并使用查询语句
./sqoop import –hive-import –connect jdbc:oracle:thin:@192.168.56.101:1521:orcl –username scott –password tiger –m 1 –query ‘select * from emp where SAL<2000 AND $CONDITIONS’ –target-dir ‘/sqoop/emp5’ –hive-table emp5
注意:必须有AND $CONDITIONS,固定格式
⑥ 使用sqoop将hive中的数据导出到oracle中。
./sqoop export –connect jdbc:oracle:thin:@192.168.56.101:1521:orcl –username scott –password tiger -m 1 –table myemp –export-dir **
注意:需要oracle数据库中先有myemp这个表,并且格式跟*中的一样。

正真的企业级环境数据迁移如下图:
这里写图片描述


第三章 Hive的数据查询

3-1简单查询和fetch task

Hive中很多查询会转换成mapreduce的作业来执行,但有少量的查询语句不用转换成MapReduce作业。如select * from student。
为什么当在hive中执行比较简单的查询语句时,有时速度比传统的oracle速度还要慢?
因为:1、跟自己机器的配置有关系;2、使用hive要操作数据仓库,当仓库中的数据比较多时,使用hive的速度会比较快。
查询表达式中可以进行一些算术操作,并且可以用hive中的内置函数nvl()将值为null的字段转换成0。
例如:
-查询员工信息:员工号,姓名,月薪,年薪。奖金,年收入
select empno,ename,sal,sal*12,comm,sal*12+nvl(comm,0) from emp;
-查询奖金为null的员工:
select * from emp where comm=null ×错误 应该是:select * from emp where comm is null
distinct:去重,并且作用后面的所有列(组合起来的重复)

简单查询的fetch task功能
- 从hive0.10.0版本开始支持

这篇关于《走近大数据之Hive进阶》学习笔记(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/920188

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06