Android P 显示流程分析(三)---EventThread MessageQueue 交互分析

2024-04-20 06:32

本文主要是介绍Android P 显示流程分析(三)---EventThread MessageQueue 交互分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上篇分析SurfaceFlinger的init()里创建了几个线程,主要用于界面刷新。里面涉及了一个EventThread和MessageQueue。我们来看看像界面刷新这种高频的事件通知及处理,Google是如何设计的。

EventThread的初始化

EventThread::EventThread(VSyncSource* src, ResyncWithRateLimitCallback resyncWithRateLimitCallback,InterceptVSyncsCallback interceptVSyncsCallback, const char* threadName){//创建一个线程,实际做事的也是这个线程处理的mThread = std::thread(&EventThread::threadMain, this);...                    
}                         

创建connection

其它一些线程需要将事件推给EventThread去处理,需要中间有一个连接者与EventThread交互,EventThread里面就创建出来了一个内部类Connection,负责连接交互的工作

sp<BnDisplayEventConnection> EventThread::createEventConnection() const {return new Connection(const_cast<EventThread*>(this));
}
class Connection : public BnDisplayEventConnection {
public:virtual status_t postEvent(const DisplayEventReceiver::Event& event);
private:void requestNextVsync() override; 
}

上篇SurfaceFlinger.init()中实例化一个EventThread之后,就调用了mEventQueue->setEventThread(mSFEventThread.get()),

void MessageQueue::setEventThread(android::EventThread* eventThread) {
...mEventThread = eventThread;mEvents = eventThread->createEventConnection();
...
}
sp<BnDisplayEventConnection> EventThread::createEventConnection() const {return new Connection(const_cast<EventThread*>(this));
}    

MessageQueue中的mEvents就是一个connection对象。就是它就将MessageQueue与EventThread连接起来了。
我们再来看看EventHandler 的那个线程启动之后,做了哪些事情:

void EventThread::threadMain() NO_THREAD_SAFETY_ANALYSIS {std::unique_lock<std::mutex> lock(mMutex);while (mKeepRunning) {DisplayEventReceiver::Event event;Vector<sp<EventThread::Connection> > signalConnections;signalConnections = waitForEventLocked(&lock, &event);// dispatch events to listeners...const size_t count = signalConnections.size();for (size_t i = 0; i < count; i++) { const sp<Connection>& conn(signalConnections[i]);// now see if we still need to report this eventstatus_t err = conn->postEvent(event);if (err == -EAGAIN || err == -EWOULDBLOCK) {ALOGW("EventThread: dropping event (%08x) for connection %p", event.header.type,conn.get());} else if (err < 0) {removeDisplayEventConnectionLocked(signalConnections[i]);}}}
}

总体来说是获取事件,将获取到的事件放到BitTube中去,具体的获取事件的waitForEventLocked是如何做的呢?

Vector<sp<EventThread::Connection> > EventThread::waitForEventLocked(std::unique_lock<std::mutex>* lock, DisplayEventReceiver::Event* event) {Vector<sp<EventThread::Connection> > signalConnections;while (signalConnections.isEmpty() && mKeepRunning) {for (int32_t i = 0; i < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES; i++) {timestamp = mVSyncEvent[i].header.timestamp;if (timestamp) {// we have a vsync event to dispatchif (mInterceptVSyncsCallback) {mInterceptVSyncsCallback(timestamp);}*event = mVSyncEvent[i];mVSyncEvent[i].header.timestamp = 0;vsyncCount = mVSyncEvent[i].vsync.count;break;}} if (!timestamp) {// no vsync event, see if there are some other eventeventPending = !mPendingEvents.isEmpty();if (eventPending) {// we have some other event to dispatch*event = mPendingEvents[0];mPendingEvents.removeAt(0);}}        // find out connections waiting for eventssize_t count = mDisplayEventConnections.size();for (size_t i = 0; i < count;) {sp<Connection> connection(mDisplayEventConnections[i].promote()); if (connection != nullptr) {bool added = false;if (connection->count >= 0) {// we need vsync events because at least// one connection is waiting for itwaitForVSync = true;if (timestamp) {// we consume the event only if it's time// (ie: we received a vsync event)if (connection->count == 0) {// fired this time aroundconnection->count = -1;signalConnections.add(connection);added = true;} else if (connection->count == 1 ||(vsyncCount % connection->count) == 0) {// continuous event, and time to report itsignalConnections.add(connection);added = true;}}}if (eventPending && !timestamp && !added) {// we don't have a vsync event to process// (timestamp==0), but we have some pending// messages.signalConnections.add(connection);}++i; } else {// we couldn't promote this reference, the connection has// died, so clean-up!mDisplayEventConnections.removeAt(i);--count;}}   ...// note: !timestamp implies signalConnections.isEmpty(), because we// don't populate signalConnections if there's no vsync pendingif (!timestamp && !eventPending) {// wait for something to happenif (waitForVSync) {// This is where we spend most of our time, waiting// for vsync events and new client registrations.//// If the screen is off, we can't use h/w vsync, so we// use a 16ms timeout instead.  It doesn't need to be// precise, we just need to keep feeding our clients.//// We don't want to stall if there's a driver bug, so we// use a (long) timeout when waiting for h/w vsync, and// generate fake events when necessary.bool softwareSync = mUseSoftwareVSync;auto timeout = softwareSync ? 16ms : 1000ms;if (mCondition.wait_for(*lock, timeout) == std::cv_status::timeout) {if (!softwareSync) {ALOGW("Timed out waiting for hw vsync; faking it");}// FIXME: how do we decide which display id the fake// vsync came from ?mVSyncEvent[0].header.type = DisplayEventReceiver::DISPLAY_EVENT_VSYNC;mVSyncEvent[0].header.id = DisplayDevice::DISPLAY_PRIMARY;mVSyncEvent[0].header.timestamp = systemTime(SYSTEM_TIME_MONOTONIC);mVSyncEvent[0].vsync.count++;}} else {// Nobody is interested in vsync, so we just want to sleep.// h/w vsync should be disabled, so this will wait until we// get a new connection, or an existing connection becomes// interested in receiving vsync again.mCondition.wait(*lock);}}}// here we're guaranteed to have a timestamp and some connections to signal// (The connections might have dropped out of mDisplayEventConnections// while we were asleep, but we'll still have strong references to them.)return signalConnections;
}                     

waitForEventLocked 就如果vsyncEvent和pendingEvent里已经存在事件,就将其取出指定给event,然后遍历出所有的mDisplayEventConnections, 找且需要的connection, 将他们一一添加到signalConnections中, 如果没有找到需要connection, 就设置mCondition.wait(*lock), 条件加锁等待,直到此条件被唤醒。
我们上面EventThread的threadMain分析到将获取的signalConnections中的connection遍历出来,然后将通过调用 connection的postEvent 将event事件加入到BitTube中。

MessageQueue的作用

surfaceFlinger很多事件都是通过MessageQueue来处理的,SurfaceFlinger里的mEventQueue就是MessageQueue的对象指针。

void SurfaceFlinger::waitForEvent() {mEventQueue->waitMessage();
}
void SurfaceFlinger::signalTransaction() {mEventQueue->invalidate();
}
void SurfaceFlinger::signalLayerUpdate() {mEventQueue->invalidate();
}
void SurfaceFlinger::signalRefresh() {mRefreshPending = true;mEventQueue->refresh();
}
void SurfaceFlinger::run() {do {waitForEvent();} while (true);
}

以上这些都是通过MessageQueue去调用实现的。那我们再具体看看MessageQueue里是如何实现的。

void MessageQueue::invalidate() {mEvents->requestNextVsync();
}
void EventThread::Connection::requestNextVsync() {mEventThread->requestNextVsync(this);
}
void EventThread::requestNextVsync(const sp<EventThread::Connection>& connection) {std::lock_guard<std::mutex> lock(mMutex);if (connection->count < 0) {connection->count = 0;mCondition.notify_all();}
}

invalidate 主要是为了唤醒waitForEventLocked , 让EventThread继续执行。

void MessageQueue::refresh() {mHandler->dispatchRefresh();
}
void MessageQueue::Handler::dispatchRefresh() {if ((android_atomic_or(eventMaskRefresh, &mEventMask) & eventMaskRefresh) == 0) {mQueue.mLooper->sendMessage(this, Message(MessageQueue::REFRESH));}
}
void MessageQueue::Handler::handleMessage(const Message& message) {switch (message.what) {...case REFRESH:android_atomic_and(~eventMaskRefresh, &mEventMask);mQueue.mFlinger->onMessageReceived(message.what);break;}
}
void SurfaceFlinger::onMessageReceived(int32_t what) {... case MessageQueue::REFRESH: {handleMessageRefresh();break;}
}
void SurfaceFlinger::handleMessageRefresh() {ATRACE_CALL();mRefreshPending = false;nsecs_t refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);preComposition(refreshStartTime);rebuildLayerStacks();setUpHWComposer();doDebugFlashRegions();doTracing("handleRefresh");logLayerStats();doComposition();postComposition(refreshStartTime);mPreviousPresentFence = getBE().mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);mHadClientComposition = false;for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {const sp<DisplayDevice>& displayDevice = mDisplays[displayId];mHadClientComposition = mHadClientComposition ||getBE().mHwc->hasClientComposition(displayDevice->getHwcDisplayId());}mVsyncModulator.onRefreshed(mHadClientComposition);mLayersWithQueuedFrames.clear();
}    	   

最后调用到了SurfaceFlinger的handleMessageRefresh(), 里面涉及到图层的合成了。
到这里EventThread和MessageQueue就分析完了。

这篇关于Android P 显示流程分析(三)---EventThread MessageQueue 交互分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/919518

相关文章

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

Android实现打开本地pdf文件的两种方式

《Android实现打开本地pdf文件的两种方式》在现代应用中,PDF格式因其跨平台、稳定性好、展示内容一致等特点,在Android平台上,如何高效地打开本地PDF文件,不仅关系到用户体验,也直接影响... 目录一、项目概述二、相关知识2.1 PDF文件基本概述2.2 android 文件访问与存储权限2.

Android Studio 配置国内镜像源的实现步骤

《AndroidStudio配置国内镜像源的实现步骤》本文主要介绍了AndroidStudio配置国内镜像源的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、修改 hosts,解决 SDK 下载失败的问题二、修改 gradle 地址,解决 gradle

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO