【项目亮点】大厂中分布式事务的最佳实践 问题产生->难点与权衡(偏爱Saga)->解决方案

本文主要是介绍【项目亮点】大厂中分布式事务的最佳实践 问题产生->难点与权衡(偏爱Saga)->解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【项目亮点】大厂中分布式事务的最佳实践 问题产生->难点与权衡->解决方案->底层实现->应用案例

不断有同学问我大厂中实践分布式事务的问题,这里从分布式事务的产生,到强弱一致性与性能的权衡,再到最终落地的解决方案,再到实际的代码实现,再到我工作中实际使用SAGA模式的应用案例,一篇文章讲清楚.

问题的产生

83.7%分布式事务的产生都是因为拆分微服务导致的:

过去:
曾经在单体服务的时代,所有的数据库操作都是单体服务和mysql集群直接交互
比如电商中的下单操作,先更新订单,再扣减库存
订单和库存都在同一个数据库中,可以使用本地事务保证ACID特性现状:
现在该服务拆分成了一大堆微服务,其中订单服务和库存服务成了两个服务
那么更新订单和扣减库存就成了两个RPC,数据也属于不同的数据库
这时候,如果更新订单成功了,扣减库存失败了(网络问题或者库存不足)
就会出现一致性问题目标
分布式事务的目标就是让保证订单和库存数据的一致性至于是(回滚/补偿 还是重试)(TCC(又分为本地和远端,一般说的SEATA那种都是远端实现)  SAGA型  最大努力通知型  可靠消息型)
我们一会儿再说

一句话概括,分布式事务就是RPC和MQ没法像本地事务那样保证ACID的特性,为了(尽可能,最多保证几个9不可能完全)保证数据库操作,RPC,MQ三者混合使用时的原子性与一致性,而引入的解决方案.

难点与权衡 && 为什么大厂更偏爱Saga分布式事务?

分布式事务的权衡本质上是对性能和一致性的权衡.
熟悉CAP理论的小伙伴都知道,P(分区容错性)是一定要保证的,而C(一致性)和A(高可用)就要做一个权衡了. 而在互联网的业务中,对性能的要求是很高的,不可能为了保证强一致性而导致系统性能出问题.
所以分布式事务中强一致性的方案实际应用的很少. 我们常常在保证高性能的同时,保证最终一致性.
我待过的团队都更倾向于使用SAGA模式来解决分布式事务问题.原因如下:

强一致性方案,对性能损耗严重 直接pass(比如2PC,3PC)
最大努力通知型,一致性太差,连最终一致性都无法保证 直接pass最终一致性方案 主流的有SAGATCC模式TCC模式,对代码侵入性太大了,需要把流程改造成try->confirm->cancel
的形式,try锁定的资源只有事务完成或者超时才会释放. 
而且部分框架TCC的实现需要依赖TM(事务管理)集群,TM集群也是潜在的性能瓶颈的风险.所以我们更倾向于使用Saga模式来实现分布式事务
Saga模式引入了全局事务和分支事务的概念,每个分支事务除了业务逻辑还有补偿逻辑
如果调用链路 A->B->C->D ,比如执行到C的时候抛了异常,则从C开始逆向执行补偿逻辑
补偿例子: A->B->C(执行抛出异常)->C补偿->B补偿->A补偿
重试例子: A->B->C(执行抛出异常)->D  执行完了,C会一直重试,直到C执行成功或者大于配置的阈值时停止当然除了补偿,还可以用配置重试保障一致性
一般来说,我们像更新单据这种操作更倾向于重试
而像扣减库存这种操作更倾向于补偿 (因为扣减库存失败绝大多数是因为库存不足,重试没有意义)

这里多提一嘴,很多分布式事务解决方案比如TCC或者SAGA都有两种实现方式 :1.引入TM事务协调器来管理协调事务 2.本地建表分布式方式来管理协调事务 个人建议接入的时候最好选择方式2分布式的方式,最好不要依赖TM(事务管理)集群,TM集群也是潜在的性能瓶颈的风险

解决方案

本地事务信息表+定时任务 实现
核心思想: 用本地事务表 驱动 MQ(本地事务能保证一致性与原子性)
在这里插入图片描述

我们知道,之所以会有不一致问题,说白了就是因为MQRPC
也就是说如果全部操作都是本地事务,那就能保证ACID,当然也包括一致性与原子性
那把MQ/RPC转成本地事务不就行了?
或者说: 用本地事务表 驱动 MQ/RPC
当然,这种思想好,但实际实现会有严重的性能问题(反射)那么,我们退而求其次,使用消息队列中间件来让各个分支事务通信(具体见上图),
当各个本地事务之间要通信感知彼此执行成功还是失败时,
这个通信的消息,可以用本地事务表来驱动,
来保证了消息和业务逻辑的一致性.

这篇关于【项目亮点】大厂中分布式事务的最佳实践 问题产生->难点与权衡(偏爱Saga)->解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/919435

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1